Mercurial > hg > Members > kono > Proof > category
changeset 630:d2fc6fb58e0e
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 26 Jun 2017 21:23:24 +0900 |
parents | 693020c766d2 |
children | 7be3eb96310c |
files | freyd2.agda |
diffstat | 1 files changed, 20 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd2.agda Mon Jun 26 17:41:02 2017 +0900 +++ b/freyd2.agda Mon Jun 26 21:23:24 2017 +0900 @@ -261,25 +261,30 @@ } where pi : Obj ( K (Sets) A * ↓ U) pi = preinitialObj PI + pihom : Hom Sets (FObj (K Sets A *) (obj pi)) (FObj U (obj pi)) + pihom = hom pi ub : (b : Obj A) (x : FObj U b ) → Hom Sets (FObj (K Sets A *) b) (FObj U b) ub b x OneObj = x + ob : (b : Obj A) (x : FObj U b ) → Obj ( K Sets A * ↓ U) + ob b x = record { obj = b ; hom = ub b x} + piArrow : (b : Obj ( K Sets A * ↓ U)) → Hom ( K Sets A * ↓ U) pi b + piArrow b = SFSFMap← SFS ( preinitialArrow PI ) tmap1 : (b : Obj A) → Hom Sets (FObj U b) (FObj (Yoneda A (obj pi)) b) - tmap1 b x = arrow ( SFSFMap← SFS ( preinitialArrow PI {FObj (SFSF SFS) (record { obj = b ; hom = ub b x}) } )) - tmap2 : (b : Obj A) → Hom Sets (FObj (Yoneda A (obj (preinitialObj PI))) b) (FObj U b) - tmap2 b x = ( FMap U x ) ( hom ( preinitialObj PI ) OneObj ) + tmap1 b x = arrow ( piArrow ( ob b x ) ) + preinitComm : (a : Obj A ) ( x : FObj U a ) → Sets [ Sets [ FMap U (arrow (piArrow (ob a x))) o hom pi ] + ≈ Sets [ ub a x o FMap (K Sets A *) (arrow (piArrow (ob a x))) ] ] + preinitComm a x = comm (piArrow (ob a x )) comm11 : (a b : Obj A) (f : Hom A a b) (y : FObj U a ) → - ( Sets [ FMap (Yoneda A (obj (preinitialObj PI))) f o - ( λ x → arrow ( SFSFMap← SFS ( preinitialArrow PI {FObj (SFSF SFS) (record { obj = a ; hom = ub a x}) } ))) ] ) y - ≡ (Sets [ ( λ x → arrow ( SFSFMap← SFS ( preinitialArrow PI {FObj (SFSF SFS) (record { obj = b ; hom = ub b x}) } ))) o FMap U f ] ) y + ( Sets [ FMap (Yoneda A (obj (preinitialObj PI))) f o ( λ x → arrow (piArrow (ob a x))) ] ) y + ≡ (Sets [ ( λ x → arrow (piArrow (ob b x))) o FMap U f ] ) y comm11 a b f y = begin - ( Sets [ FMap (Yoneda A (obj (preinitialObj PI))) f o - ( λ x → arrow ( SFSFMap← SFS ( preinitialArrow PI {FObj (SFSF SFS) (record { obj = a ; hom = ub a x}) } ))) ] ) y + ( Sets [ FMap (Yoneda A (obj (preinitialObj PI))) f o ( λ x → arrow (piArrow (ob a x))) ] ) y ≡⟨⟩ - A [ f o arrow ( SFSFMap← SFS ( preinitialArrow PI {FObj (SFSF SFS) (record { obj = a ; hom = ub a y}) } )) ] + A [ f o arrow (piArrow (ob a y)) ] ≡⟨ {!!} ⟩ - arrow ( SFSFMap← SFS ( preinitialArrow PI {FObj (SFSF SFS) (record { obj = b ; hom = ub b (FMap U f y) } ) } ) ) + arrow (piArrow (ob b (FMap U f y) )) ≡⟨⟩ - (Sets [ ( λ x → arrow ( SFSFMap← SFS ( preinitialArrow PI {FObj (SFSF SFS) (record { obj = b ; hom = ub b x}) } ))) o FMap U f ] ) y + (Sets [ ( λ x → arrow (piArrow (ob b x))) o FMap U f ] ) y ∎ where open import Relation.Binary.PropositionalEquality open ≡-Reasoning @@ -287,9 +292,9 @@ comm1 {a} {b} {f} = let open ≈-Reasoning Sets in begin FMap (Yoneda A (obj (preinitialObj PI))) f o tmap1 a ≈⟨⟩ - FMap (Yoneda A (obj (preinitialObj PI))) f o ( λ x → arrow ( SFSFMap← SFS ( preinitialArrow PI {FObj (SFSF SFS) (record { obj = a ; hom = ub a x}) } ))) + FMap (Yoneda A (obj (preinitialObj PI))) f o ( λ x → arrow (piArrow ( ob a x ))) ≈⟨ extensionality Sets ( λ y → comm11 a b f y ) ⟩ - ( λ x → arrow ( SFSFMap← SFS ( preinitialArrow PI {FObj (SFSF SFS) (record { obj = b ; hom = ub b x}) } ))) o FMap U f + ( λ x → arrow (piArrow (ob b x))) o FMap U f ≈⟨⟩ tmap1 b o FMap U f ∎ @@ -303,6 +308,8 @@ ∎ where open import Relation.Binary.PropositionalEquality open ≡-Reasoning + tmap2 : (b : Obj A) → Hom Sets (FObj (Yoneda A (obj (preinitialObj PI))) b) (FObj U b) + tmap2 b x = ( FMap U x ) ( hom ( preinitialObj PI ) OneObj ) comm2 : {a b : Obj A} {f : Hom A a b} → Sets [ Sets [ FMap U f o tmap2 a ] ≈ Sets [ tmap2 b o FMap (Yoneda A (obj (preinitialObj PI))) f ] ] comm2 {a} {b} {f} = let open ≈-Reasoning Sets in begin