Mercurial > hg > Members > kono > Proof > category
changeset 192:d7e4b7b441be
F(a) → Nat(h_a,F) done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 30 Aug 2013 16:34:48 +0900 |
parents | 45191dc3f78a |
children | 4e6f080f0107 |
files | yoneda.agda |
diffstat | 1 files changed, 14 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/yoneda.agda Fri Aug 30 15:28:57 2013 +0900 +++ b/yoneda.agda Fri Aug 30 16:34:48 2013 +0900 @@ -215,9 +215,22 @@ F2Nat : {a : Obj A} → {F : Obj SetsAop} → FObj F a → Hom SetsAop (CF {a}) F F2Nat {a} {F} x = record { TMap = F2Natmap {a} {F} {x} ; isNTrans = isNTrans1 } where + commute1 : {a₁ b : Obj (Category.op A)} {f : Hom (Category.op A) a₁ b} (g : Hom A a₁ a) → + (Sets [ FMap F f o FMap F g ]) x ≡ FMap F (A [ g o f ] ) x + commute1 g = let open ≈-Reasoning (Sets) in + cong ( λ f → f x ) ( sym ( distr F ) ) commute : {a₁ b : Obj (Category.op A)} {f : Hom (Category.op A) a₁ b} → Sets [ Sets [ FMap F f o F2Natmap {a} {F} {x} a₁ ] ≈ Sets [ F2Natmap {a} {F} {x} b o FMap CF f ] ] - commute {a₁} {b} {f} = extensionality ( λ (g : Hom A a₁ a ) → ? ) + commute {a₁} {b} {f} = let open ≈-Reasoning (Sets) in + begin + Sets [ FMap F f o F2Natmap {a} {F} {x} a₁ ] + ≈⟨⟩ + Sets [ FMap F f o (λ ( g : Hom A a₁ a ) → ( FMap F g ) x) ] + ≈⟨ extensionality ( λ (g : Hom A a₁ a) → commute1 {a₁} {b} {f} g ) ⟩ + Sets [ (λ ( g : Hom A b a ) → ( FMap F g ) x) o FMap CF f ] + ≈⟨⟩ + Sets [ F2Natmap {a} {F} {x} b o FMap CF f ] + ∎ isNTrans1 : IsNTrans (Category.op A) (Sets {c₂}) (CF {a}) F (F2Natmap {a} {F}) isNTrans1 = record { commute = λ {a₁ b f} → commute {a₁} {b} {f} }