Mercurial > hg > Members > kono > Proof > category
changeset 876:d8ed393d7878
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 09 Apr 2020 20:00:23 +0900 |
parents | 4d50d51e9410 |
children | 66dfc4f80ba3 |
files | CCCGraph1.agda |
diffstat | 1 files changed, 19 insertions(+), 175 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph1.agda Wed Apr 08 17:49:57 2020 +0900 +++ b/CCCGraph1.agda Thu Apr 09 20:00:23 2020 +0900 @@ -29,161 +29,29 @@ data Arrows : (b c : Objs ) → Set ( c₁ ⊔ c₂ ) where id : ( a : Objs ) → Arrows a a --- case i ○ : ( a : Objs ) → Arrows a ⊤ --- case i - <_,_> : {a b c : Objs } → Arrows c a → Arrows c b → Arrows c (a ∧ b) --- case iii + <_,_> : {a b c : Objs } → Arrows c a → Arrows c b → Arrows c (a ∧ b) -- case iii iv : {b c d : Objs } ( f : Arrow d c ) ( g : Arrows b d ) → Arrows b c -- cas iv - eval : {a b : Objs } (f : Arrows a b ) → Arrows a b - eval (id a) = id a - eval (○ a) = ○ a - eval < f , f₁ > = < eval f , eval f₁ > - eval (iv f (id a)) = iv f (id a) - eval (iv f (○ a)) = iv f (○ a) - eval (iv π < g , h >) = eval g - eval (iv π' < g , h >) = eval h - eval (iv ε < g , h >) = iv ε < eval g , eval h > - eval (iv (f *) < g , h >) = iv (f *) < eval g , eval h > - eval (iv f (iv g h)) with eval (iv g h) - eval (iv f (iv g h)) | id a = iv f (id a) - eval (iv f (iv g h)) | ○ a = iv f (○ a) - eval (iv π (iv g h)) | < t , t₁ > = t - eval (iv π' (iv g h)) | < t , t₁ > = t₁ - eval (iv ε (iv g h)) | < t , t₁ > = iv ε < t , t₁ > - eval (iv (f *) (iv g h)) | < t , t₁ > = iv (f *) < t , t₁ > - eval (iv f (iv g h)) | iv f1 t = iv f (iv f1 t) - - pi : {a b c : Objs} → Arrows a ( b ∧ c) → Arrows a b - pi (id .(_ ∧ _)) = iv π (id _) - pi < x , x₁ > = x - pi (iv f x) = iv π (iv f x) - - pi' : {a b c : Objs} → Arrows a ( b ∧ c) → Arrows a c - pi' (id .(_ ∧ _)) = iv π' (id _) - pi' < x , x₁ > = x₁ - pi' (iv f x) = iv π' (iv f x) - - refl-<l> : {a b c : Objs} → { f f1 : Arrows a b } { g g1 : Arrows a c } → < f , g > ≡ < f1 , g1 > → f ≡ f1 - refl-<l> refl = refl - - refl-<r> : {a b c : Objs} → { f f1 : Arrows a b } { g g1 : Arrows a c } → < f , g > ≡ < f1 , g1 > → g ≡ g1 - refl-<r> refl = refl - _・_ : {a b c : Objs } (f : Arrows b c ) → (g : Arrows a b) → Arrows a c - id a ・ g = eval g + id a ・ g = g ○ a ・ g = ○ _ - < f , g > ・ h = < f ・ h , g ・ h > - iv f (id _) ・ h = eval ( iv f h ) - iv π < g , g₁ > ・ h = g ・ h - iv π' < g , g₁ > ・ h = g₁ ・ h - iv ε < g , g₁ > ・ h = iv ε < g ・ h , g₁ ・ h > - iv (f *) < g , g₁ > ・ h = iv (f *) < g ・ h , g₁ ・ h > - iv f ( (○ a)) ・ g = iv f ( ○ _ ) - iv x y ・ id a = eval (iv x y) - iv f (iv f₁ g) ・ h with eval (iv f₁ g ・ h ) - (iv f (iv f₁ g) ・ h) | id a = iv f (id a) - (iv f (iv f₁ g) ・ h) | ○ a = iv f (○ a) - (iv π (iv f₁ g) ・ h) | < t , t₁ > = t - (iv π' (iv f₁ g) ・ h) | < t , t₁ > = t₁ - (iv ε (iv f₁ g) ・ h) | < t , t₁ > = iv ε < t , t₁ > - (iv (f *) (iv f₁ g) ・ h) | < t , t₁ > = iv (f *) < t , t₁ > - (iv f (iv f₁ g) ・ h) | iv f₂ t = iv f (iv f₂ t) - - _==_ : {a b : Objs } → ( x y : Arrows a b ) → Set (c₁ ⊔ c₂) - _==_ {a} {b} x y = eval x ≡ eval y - - identityR : {A B : Objs} {f : Arrows A B} → (f ・ id A) == f - identityR {a} {.a} {id a} = refl - identityR {a} {⊤} {○ a} = refl - identityR {_} {_} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) (identityR {_} {_} {f} ) (identityR {_} {_} {f₁}) - identityR {_} {_} {iv f (id a)} = refl - identityR {_} {_} {iv f (○ a)} = refl - identityR {_} {_} {iv π < g , g₁ >} = identityR {_} {_} {g} - identityR {_} {_} {iv π' < g , g₁ >} = identityR {_} {_} {g₁} - identityR {_} {_} {iv ε < f , f₁ >} = cong₂ (λ j k → iv ε < j , k > ) (identityR {_} {_} {f} ) (identityR {_} {_} {f₁}) - identityR {_} {_} {iv (x *) < f , f₁ >} = cong₂ (λ j k → iv (x *) < j , k > ) (identityR {_} {_} {f} ) (identityR {_} {_} {f₁}) - identityR {_} {_} {iv f (iv g h)} = {!!} - - open import Data.Empty - open import Relation.Nullary - - open import Relation.Binary.HeterogeneousEquality as HE using (_≅_;refl) - - std-iv : {a b c d : Objs} (x : Arrow c d) (y : Arrow b c ) (f : Arrows a b) - → ( {b1 b2 : Objs } → {g : Arrows a b1 } {h : Arrows a b2 } → ¬ (eval f) ≅ < g , h > ) - → eval (iv x ( iv y f ) ) ≡ iv x ( eval (iv y f ) ) - std-iv x y (id a) _ = refl - std-iv x y (○ a) _ = refl - std-iv x y < f , f₁ > ne = ⊥-elim (ne refl) - std-iv x y (iv z f) ne with eval (iv z f) - std-iv x y (iv z f) ne | id a = refl - std-iv x y (iv z f) ne | ○ a = refl - std-iv x y (iv z f) ne | < t , t₁ > = ⊥-elim (ne refl) - std-iv (arrow x) _ (iv z f) ne | iv z1 t = refl - std-iv π y (iv z f) ne | iv z1 t = refl - std-iv π' y (iv z f) ne | iv z1 t = refl - std-iv ε y (iv z f) ne | iv z1 t = refl - std-iv (x *) y (iv z f) ne | iv z1 t = refl - - std-iv' : {a b c : Objs} (y : Arrow b c ) (f : Arrows a b) - → ( {b1 b2 : Objs } → {g : Arrows a b1 } {h : Arrows a b2 } → ¬ (eval f) ≅ < g , h > ) - → eval ( iv y f ) ≡ iv y (eval f ) - std-iv' y (id a) ne = refl - std-iv' y (○ a) ne = refl - std-iv' y < f , f₁ > ne = ⊥-elim (ne refl) - std-iv' y (iv f z) ne with eval (iv f z) - std-iv' y (iv f z) ne | id a = refl - std-iv' y (iv f z) ne | ○ a = refl - std-iv' y (iv f z) ne | < t , t₁ > = ⊥-elim (ne refl) - std-iv' (arrow x) (iv f z) ne | iv f₁ t = refl - std-iv' π (iv f z) ne | iv f₁ t = refl - std-iv' π' (iv f z) ne | iv f₁ t = refl - std-iv' ε (iv f z) ne | iv f₁ t = refl - std-iv' (y *) (iv f z) ne | iv f₁ t = refl - - idem-eval : {a b : Objs } (f : Arrows a b ) → eval (eval f) ≡ eval f - idem-eval (id a) = refl - idem-eval (○ a) = refl - idem-eval < f , f₁ > = cong₂ ( λ j k → < j , k > ) (idem-eval f) (idem-eval f₁) - idem-eval (iv f (id a)) = refl - idem-eval (iv f (○ a)) = refl - idem-eval (iv π < g , g₁ >) = idem-eval g - idem-eval (iv π' < g , g₁ >) = idem-eval g₁ - idem-eval (iv ε < f , f₁ >) = cong₂ ( λ j k → iv ε < j , k > ) (idem-eval f) (idem-eval f₁) - idem-eval (iv (x *) < f , f₁ >) = cong₂ ( λ j k → iv (x *) < j , k > ) (idem-eval f) (idem-eval f₁) - idem-eval (iv f (iv g h)) with eval (iv g h) | idem-eval (iv g h) | inspect eval (iv g h) - idem-eval (iv f (iv g h)) | id a | m | _ = refl - idem-eval (iv f (iv g h)) | ○ a | m | _ = refl - idem-eval (iv π (iv g h)) | < t , t₁ > | m | _ = refl-<l> m - idem-eval (iv π' (iv g h)) | < t , t₁ > | m | _ = refl-<r> m - idem-eval (iv ε (iv g h)) | < t , t₁ > | m | _ = cong ( λ k → iv ε k ) m - idem-eval (iv (f *) (iv g h)) | < t , t₁ > | m | _ = cong ( λ k → iv (f *) k ) m - idem-eval (iv f (iv g h)) | iv f₁ t | m | record { eq = ee } = {!!} - -- trans lemma (cong ( λ k → iv f k ) m ) where - -- lemma : eval (iv f (iv f₁ t)) ≡ iv f (eval (iv f₁ t)) - -- lemma = std-iv f f₁ t {!!} - - assoc-iv : {a b c d : Objs} (x : Arrow c d) (f : Arrows b c) (g : Arrows a b ) → eval (iv x (f ・ g)) ≡ eval (iv x f ・ g) - assoc-iv x (id a) g = {!!} - assoc-iv x (○ a) g = refl - assoc-iv π < f , f₁ > g = refl - assoc-iv π' < f , f₁ > g = refl - assoc-iv ε < f , f₁ > g = refl - assoc-iv (x *) < f , f₁ > g = refl - assoc-iv x (iv f g) h = begin - eval (iv x (iv f g ・ h)) - ≡⟨ {!!} ⟩ - eval (iv x (iv f g) ・ h) - ∎ where open ≡-Reasoning + < f , g > ・ h = < f ・ h , g ・ h > + iv f g ・ h = iv f ( g ・ h ) - ==←≡ : {A B : Objs} {f g : Arrows A B} → f ≡ g → f == g - ==←≡ eq = cong (λ k → eval k ) eq + identityR : {A B : Objs} {f : Arrows A B} → (f ・ id A) ≡ f + identityR {a} {a} {id a} = refl + identityR {a} {⊤} {○ a} = refl + identityR {a} {_} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) identityR identityR + identityR {a} {b} {iv f g} = cong (λ k → iv f k ) identityR + PL : Category (c₁ ⊔ c₂) (c₁ ⊔ c₂) (c₁ ⊔ c₂) PL = record { Obj = Objs; Hom = λ a b → Arrows a b ; _o_ = λ{a} {b} {c} x y → x ・ y ; - _≈_ = λ x y → x == y ; + _≈_ = λ x y → x ≡ y ; Id = λ{a} → id a ; isCategory = record { isEquivalence = record {refl = refl ; trans = trans ; sym = sym } ; @@ -193,38 +61,14 @@ associative = λ{a b c d f g h } → associative f g h } } where - identityL : {A B : Objs} {f : Arrows A B} → (id B ・ f) == f - identityL {_} {_} {id a} = refl - identityL {_} {_} {○ a} = refl - identityL {a} {b} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) (identityL {_} {_} {f}) (identityL {_} {_} {f₁}) - identityL {_} {_} {iv f f₁} = {!!} + identityL : {A B : Objs} {f : Arrows A B} → (id B ・ f) ≡ f + identityL = refl associative : {a b c d : Objs} (f : Arrows c d) (g : Arrows b c) (h : Arrows a b) → - (f ・ (g ・ h)) == ((f ・ g) ・ h) - associative (id a) g h = {!!} + (f ・ (g ・ h)) ≡ ((f ・ g) ・ h) + associative (id a) g h = refl associative (○ a) g h = refl - associative (< f , f1 > ) g h = cong₂ ( λ j k → < j , k > ) (associative f g h) (associative f1 g h) - associative {a} (iv π < f , f1 > ) g h = associative f g h - associative {a} (iv π' < f , f1 > ) g h = associative f1 g h - associative {a} (iv ε < f , f1 > ) g h = cong ( λ k → iv ε k ) ( associative < f , f1 > g h ) - associative {a} (iv (x *) < f , f1 > ) g h = cong ( λ k → iv (x *) k ) ( associative < f , f1 > g h ) - associative {a} (iv x (id _)) g h = begin - eval (iv x (id _) ・ (g ・ h)) - ≡⟨ {!!} ⟩ - eval (iv x (g ・ h)) - ≡⟨ assoc-iv x g h ⟩ - eval (iv x g ・ h) - ≡⟨ {!!} ⟩ - eval ((iv x (id _) ・ g) ・ h) - ∎ where open ≡-Reasoning - associative {a} (iv x (○ _)) g h = refl - associative {a} (iv x (iv y f)) g h = begin - eval (iv x (iv y f) ・ (g ・ h)) - ≡⟨ sym (assoc-iv x (iv y f) ( g ・ h)) ⟩ - eval (iv x ((iv y f) ・ (g ・ h))) - ≡⟨ {!!} ⟩ - eval ((iv x (iv y f) ・ g) ・ h) - ∎ where open ≡-Reasoning - -- cong ( λ k → iv x k ) (associative f g h) + associative < f , f₁ > g h = cong₂ (λ j k → < j , k > ) (associative f g h) (associative f₁ g h) + associative (iv f f1) g h = cong (λ k → iv f k ) ( associative f1 g h ) o-resp-≈ : {A B C : Objs} {f g : Arrows A B} {h i : Arrows B C} → - f == g → h == i → (h ・ f) == (i ・ g) - o-resp-≈ f=g h=i = {!!} + f ≡ g → h ≡ i → (h ・ f) ≡ (i ・ g) + o-resp-≈ refl refl = refl