Mercurial > hg > Members > kono > Proof > category
changeset 361:e9d4e6ab6cd1
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 26 Jun 2015 19:18:57 +0900 |
parents | 29e0f0bd4d2c |
children | c18b209a662a |
files | limit-to.agda |
diffstat | 1 files changed, 15 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/limit-to.agda Fri Jun 26 19:03:54 2015 +0900 +++ b/limit-to.agda Fri Jun 26 19:18:57 2015 +0900 @@ -108,17 +108,30 @@ Two-id t0 = record { Map = id-0 ; isMap = refl } Two-id t1 = record { Map = id-1 ; isMap = refl } +-- arrow composition + +_×_ : {A B C : Two} → Two-Hom B C → Two-Hom A B → Two-Hom A C +_×_ {t0} {t0} {t0} a b = {!!} +_×_ {t0} {t0} {t1} a b = {!!} +_×_ {t0} {t1} {t0} a b = {!!} +_×_ {t0} {t1} {t1} a b = {!!} +_×_ {t1} {t0} {t1} a b = {!!} +_×_ {t1} {t0} {t0} a b = {!!} +_×_ {t1} {t1} {t1} a b = {!!} +_×_ {t1} {t1} {t0} a b = {!!} + + open Two-Hom twocat : Category c₁ _ (ℓ ⊔ (suc c₂ ⊔ c₁)) twocat = record { Obj = Two ; Hom = λ a b → Two-Hom a b ; - _o_ = {!!} ; + _o_ = _×_ ; _≈_ = _≡_; Id = \{a} -> Two-id a ; isCategory = record { - isEquivalence = {!!} ; + isEquivalence = record {refl = refl ; trans = ≡-trans ; sym = ≡-sym}; identityL = {!!} ; identityR = {!!} ; o-resp-≈ = {!!} ;