Mercurial > hg > Members > kono > Proof > category
changeset 367:e9e14eec7391
limit-to dead end...
too complex TwoCat and Functor
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 05 Mar 2016 16:08:32 +0900 |
parents | e07b7578d2e7 |
children | b18585089d2e |
files | limit-to.agda |
diffstat | 1 files changed, 39 insertions(+), 26 deletions(-) [+] |
line wrap: on
line diff
--- a/limit-to.agda Sat Mar 05 14:52:49 2016 +0900 +++ b/limit-to.agda Sat Mar 05 16:08:32 2016 +0900 @@ -17,23 +17,12 @@ --- 0 1 --- ------> --- g ---- ---- ---- ---- f ---- ------> ---- a b ---- ------> ---- ^ g ---- | ---- |e ---- | ---- c ---- ^ ---- | ---- |k ---- | ---- d +--- f +--- e ------> +--- c ------> a b +--- ^ . / ------> +--- |k . h g +--- d / data TwoObject : Set where @@ -95,16 +84,40 @@ ; uniqueness = λ {d} {h} {fh=gh} {k'} → {!!} } where Γ = indexFunctor A Two two a b f g f-rev - nmap : (x : Obj Two) ( d : Obj A ) -> Hom A (FObj (K A Two d) x) (FObj Γ x) - nmap x d with (obj→ two x) - ... | t0 = ? - ... | t1 = {!!} - nat : (d : Obj A) → NTrans Two A (K A Two d) Γ - nat d = record { - TMap = λ x → nmap x d ; + nmap : (x : Obj Two) ( d : Obj A ) (h : Hom A d a ) -> Hom A (FObj (K A Two d) x) (FObj Γ x) + nmap x d h with (obj→ two x) + ... | t0 = h + ... | t1 = A [ f o h ] + commute : {x y : Obj Two} {f : Hom Two x y} (d : Obj A) (h : Hom A d a ) -> TwoObject -> TwoObject + → A [ A [ FMap Γ f o nmap x d h ] ≈ A [ nmap y d h o FMap (K A Two d) f ] ] + commute {x} {y} {f} d h t0 t0 = let open ≈-Reasoning (A) in + begin + FMap Γ f o nmap x d h + ≈⟨ {!!} ⟩ + {!!} + ≈⟨⟩ + nmap y d h + ≈↑⟨ idR ⟩ + nmap y d h o id1 A d + ≈⟨⟩ + nmap y d h o FMap (K A Two d) f + ∎ + commute {x} {y} {f} d h t0 t1 = let open ≈-Reasoning (A) in + begin + FMap Γ f o nmap x d h + ≈⟨⟩ + FMap Γ f o h + ≈⟨ {!!} ⟩ + nmap y d h o FMap (K A Two d) f + ∎ + commute {x} {y} {f} d h t1 t0 = {!!} + commute {x} {y} {f} d h t1 t1 = {!!} + nat : (d : Obj A) → (h : Hom A d a ) → NTrans Two A (K A Two d) Γ + nat d h = record { + TMap = λ x → nmap x d h ; isNTrans = record { - commute = {!!} + commute = λ {x} {y} {f} -> commute d h (obj→ two x) (obj→ two y) } } k : {d : Obj A} (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d c - k {d} h fh=gh = limit (lim Two Γ {c} {nat c}) d (nat d) + k {d} h fh=gh = limit (lim Two Γ {c} {nat c e }) d (nat d h )