changeset 859:ed0b3d2d1037

idempotent is not finnished but other parts may be proved
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 05 Apr 2020 11:15:41 +0900
parents 9d9cba1f831e
children d3cf372ac8cd
files CCCGraph1.agda
diffstat 1 files changed, 8 insertions(+), 12 deletions(-) [+]
line wrap: on
line diff
--- a/CCCGraph1.agda	Sun Apr 05 10:44:40 2020 +0900
+++ b/CCCGraph1.agda	Sun Apr 05 11:15:41 2020 +0900
@@ -88,9 +88,9 @@
    idem-eval (iv ε (iv g h)) | iv ε < t , t₁ > | m =  cong ( λ k → iv ε k ) m
    idem-eval (iv (f *) (iv g h)) | iv ε < t , t₁ > | m =  cong ( λ k → iv (f *) k ) m
    idem-eval (iv (f *) (iv g h)) | iv (f1 *) < t , t₁ > | m =  cong ( λ k → iv (f *) k ) m
-   idem-eval {a} {b} (iv {a} {b} {d} f (iv g h)) | iv {a} {d} {e} f1 (iv {a} {e} {e1} f2 t) | m =  lemma f f1 f2 where
-       lemma : (f : Arrow d b ) → (f1 : Arrow e d ) → (f2 : Arrow e1 e ) → eval (iv f (  iv f1 (iv f2 t))) ≡ iv f ( iv f1 (iv f2 t))
-       lemma f f1 f2 = ?
+   idem-eval (iv f (iv g h)) | iv f1 (iv f₁ t) | m =  {!!}
+   --     lemma : eval (iv f (  iv f1 (iv f₁ t))) ≡ iv f ( iv f1 (iv f₁ t))
+   --     lemma = {!!}
 
    _・_ :  {a b c : Objs } (f : Arrows b c ) → (g : Arrows a b) → Arrows a c
    id a ・ g = g
@@ -118,13 +118,9 @@
    identityR {a} {b} {iv π' < g , g₁ >} = identityR {_} {_} {g₁} 
    identityR {a} {b} {iv ε < f , f₁ >} = cong₂ (λ j k → iv ε < j , k > ) (identityR {_} {_} {f} ) (identityR  {_} {_} {f₁})
    identityR {a} {_} {iv (x *) < f , f₁ >} = cong₂ (λ j k → iv (x *) < j , k > ) (identityR {_} {_} {f} ) (identityR  {_} {_} {f₁})
-   identityR {a} {b} {iv {c} {d} {e} π (iv g h)} with inspect eval (iv g h) | eval (iv g h)
-   identityR {.(b ∧ _)} {b} {iv {.(b ∧ _)} {b} {.(b ∧ _)} π (iv g h)} | record {eq = refl } | id .(b ∧ _) = refl
-   identityR {a} {b} {iv {a} {b} {.(b ∧ _)} π (iv g h)} |  record {eq = refl } | < t , t₁ > = {!!}
-   identityR {a} {b} {iv {a} {b} {.(b ∧ _)} π (iv g h)} |  record {eq = refl } | iv f t = {!!}
-   identityR {a} {b} {iv {c} {d} {e} π' (iv g h)} = {!!}
-   identityR {a} {b} {iv {c} {d} {e} f (iv g h)} with identityR {_} {_} {iv g h}
-   ... | t = {!!}
+   identityR {a} {b} {iv {c} {d} {e} π (iv g h)} = refl
+   identityR {a} {b} {iv {c} {d} {e} π' (iv g h)} = refl
+   identityR {a} {b} {iv {c} {d} {e} f (iv g h)} = refl
 
    ==←≡ : {A B : Objs} {f g : Arrows A B} → f ≡ g → f == g
    ==←≡ eq = cong (λ k → eval k ) eq
@@ -148,10 +144,10 @@
                identityL {_} {_} {id a} = refl
                identityL {_} {_} {○ a} = refl
                identityL {a} {b} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) (identityL {_} {_} {f}) (identityL {_} {_} {f₁})
-               identityL {_} {_} {iv f f₁} = {!!}
+               identityL {_} {_} {iv f f₁} = refl
                associative : {a b c d : Objs} (f : Arrows c d) (g : Arrows b c) (h : Arrows a b) →
                             (f ・ (g ・ h)) == ((f ・ g) ・ h)
-               associative (id a) g h = {!!}
+               associative (id a) g h = refl
                associative (○ a) g h = refl
                associative (< f , f1 > ) g h = cong₂ ( λ j k → < j , k > ) (associative f g h) (associative f1 g h)
                associative {a} (iv x f) g h = {!!} -- cong ( λ k → iv x k ) (associative f g h)