Mercurial > hg > Members > kono > Proof > category
changeset 179:f017d892d8c3
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 28 Aug 2013 10:20:04 +0900 |
parents | 6626a7cd9129 |
children | 2d983d843e29 |
files | yoneda.agda |
diffstat | 1 files changed, 9 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/yoneda.agda Tue Aug 27 23:35:05 2013 +0900 +++ b/yoneda.agda Wed Aug 28 10:20:04 2013 +0900 @@ -5,23 +5,25 @@ open import HomReasoning open import cat-utility -open import Category.Cat +open import Relation.Binary.Core +open import Relation.Binary + -- Contravariant Functor : op A → Sets ( Obj of Sets^{A^op} ) +open Functor -CF : (a : Obj A) → Functor (op A) Sets +CF : (a : Obj A) → Functor (Category.op A) Sets CF a = record { FObj = λ b → Hom A a b - ; FMap = {b c : Obj A } λ (f : Hom A b c) → (Hom A c a) → (Hom A b a) + ; FMap = λ {b c : Obj A } → λ ( f : Hom A c b ) → {!!} ; isFunctor = record { identity = IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory Sets )) ; distr = (IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory Sets ))) ; ≈-cong = cong1 } } where - cong1 : {ℓ′ : Level} → {b c : Set ℓ′} { f g : Hom (Sets {ℓ′}) b c} → - Sets [ f ≈ g ] → Sets [ f ≈ g ] - cong1 _≡_.refl = _≡_.refl + cong1 : {b c : Obj A } { f g : Hom A b c} → A [ f ≈ g ] → Sets [ {!!} ≈ {!!} ] + cong1 eq = _≡_.refl -open Functor +