Mercurial > hg > Members > kono > Proof > category
changeset 512:f19dab948e39
on going ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 20 Mar 2017 12:50:21 +0900 |
parents | b9c086bda3cc |
children | e73c3e73a87b |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 14 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Sun Mar 19 13:28:12 2017 +0900 +++ b/SetsCompleteness.agda Mon Mar 20 12:50:21 2017 +0900 @@ -120,21 +120,24 @@ k {d} h eq = λ x → elem (h x) ( cong ( λ y → y x ) eq ) ek=h : {d : Obj Sets} {h : Hom Sets d a} {eq : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} → Sets [ Sets [ (λ e → equ e ) o k h eq ] ≈ h ] ek=h {d} {h} {eq} = refl - uniqueness : {d : Obj Sets} {h : Hom Sets d a} {eq : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → - Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → Sets [ k h eq ≈ k' ] - uniqueness {d} {h} {fh=gh} {k'} ek'=h = extensionality Sets ( λ x → + fhy=ghy : (d : Obj Sets ) ( h : Hom Sets d a ) (y : d ) → (fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]) → f (h y) ≡ g (h y) + fhy=ghy d h y fh=gh = cong ( λ f → f y ) fh=gh + repl : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → ( y : d ) → + Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → k h fh=gh y ≡ k' y + repl {d} {h} {fh=gh} {k'} y ek'=h = begin - k h fh=gh x - ≡⟨ {!!} ⟩ - elem (h x) ( ≡-cong ( λ y → y x ) fh=gh ) - ≡⟨ {!!} ⟩ - elem (equ (k' x)) {!!} - ≡⟨ {!!} ⟩ - k' x + k h fh=gh y + ≡⟨⟩ + elem (h y) (fhy=ghy d h y fh=gh ) + ≡⟨ ? ⟩ + k' y ∎ - ) where + where open import Relation.Binary.PropositionalEquality open ≡-Reasoning + uniqueness : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → + Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → Sets [ k h fh=gh ≈ k' ] + uniqueness {d} {h} {fh=gh} {k'} ek'=h = extensionality Sets ( λ y → repl {d} {h} {fh=gh}{k'} y ek'=h ) open Functor