Mercurial > hg > Members > kono > Proof > category
changeset 214:f8afdb9ed99a
b4 remains.
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 03 Sep 2013 02:38:23 +0900 |
parents | f2faee0897c7 |
children | 637b5f58ed28 |
files | equalizer.agda |
diffstat | 1 files changed, 11 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/equalizer.agda Tue Sep 03 01:25:21 2013 +0900 +++ b/equalizer.agda Tue Sep 03 02:38:23 2013 +0900 @@ -26,24 +26,24 @@ ef=eg : A [ A [ f o e ] ≈ A [ g o e ] ] k : {d : Obj A} (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d c ke=h : {d : Obj A} → ∀ {h : Hom A d a} → (eq : A [ A [ f o h ] ≈ A [ g o h ] ] ) → A [ A [ e o k {d} h eq ] ≈ h ] - uniqueness : {d : Obj A} → ∀ {h : Hom A d a} → (eq : A [ A [ f o h ] ≈ A [ g o h ] ] ) → {k' : Hom A d c } → A [ A [ e o k' ] ≈ h ] → - A [ k {d} h eq ≈ k' ] + uniqueness : {d : Obj A} → ∀ {h : Hom A d a} → (eq : A [ A [ f o h ] ≈ A [ g o h ] ] ) → {k' : Hom A d c } → + A [ A [ e o k' ] ≈ h ] → A [ k {d} h eq ≈ k' ] equalizer : Hom A c a equalizer = e record EqEqualizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where field α : {a b c : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → Hom A c a - γ : {a b d : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A c d + γ : {a b c d : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d c δ : {a b c : Obj A } → (f : Hom A a b) → Hom A a c b1 : A [ A [ f o α {a} {b} {a} f g ] ≈ A [ g o α f g ] ] - b2 : {d : Obj A } → {h : Hom A d a } → A [ A [ ( α f g) o (γ f g h) ] ≈ A [ h o α (A [ f o h ]) (A [ g o h ]) ] ] + b2 : {d : Obj A } → {h : Hom A d a } → A [ A [ ( α f g) o (γ {a} {b} {c} f g h) ] ≈ A [ h o α (A [ f o h ]) (A [ g o h ]) ] ] b3 : A [ A [ α f f o δ {a} {b} {a} f ] ≈ id1 A a ] -- b4 : {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o k ] ) ≈ k ] - b4 : {d : Obj A } {k : Hom A d c} → A [ A [ γ f g ( A [ α f g o k ] ) o δ (A [ f o A [ α f g o k ] ] ) ] ≈ {!!} ] + b4 : {d : Obj A } {k : Hom A d c} → A [ A [ γ {a} {b} {c} {d} f g ( A [ α {a} {b} {c} f g o k ] ) o δ (A [ f o A [ α f g o k ] ] ) ] ≈ k ] -- k -- A [ α f g o β f g h ] ≈ h --- β : { d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A a d --- β {d} {e} {a} {b} f g h = A [ γ {a} {b} {d} f g h o δ (A [ f o h ]) ] + β : { d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d c + β {d} {e} {a} {b} f g h = A [ γ {a} {b} {c} f g h o δ (A [ f o h ]) ] open Equalizer open EqEqualizer @@ -52,7 +52,7 @@ ( {a b c : Obj A} → (f g : Hom A a b) → Equalizer A {c} f g ) → EqEqualizer A {c} f g lemma-equ1 A {a} {b} {c} f g eqa = record { α = λ f g → e (eqa f g ) ; -- Hom A c a - γ = λ {a} {b} {d} f g h → ( k (eqa f g ) ( A [ h o (e ( eqa (A [ f o h ] ) (A [ g o h ] ))) ] ) (lemma-equ4 {a} {b} {d} f g h ) ) ; -- Hom A c d + γ = λ {a} {b} {c} {d} f g h → k (eqa f g ) {d} ( A [ h o (e ( eqa (A [ f o h ] ) (A [ g o h ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h ) ; -- Hom A c d δ = λ {a} f → k (eqa f f) (id1 A a) (lemma-equ2 f); -- Hom A a c b1 = ef=eg (eqa f g) ; b2 = lemma-equ5 ; @@ -68,9 +68,9 @@ ≈⟨ ke=h (eqa f f ) (lemma-equ2 f) ⟩ id1 A a ∎ - lemma-equ4 : {a b d : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → + lemma-equ4 : {a b c d : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → A [ A [ f o A [ h o e (eqa (A [ f o h ]) (A [ g o h ])) ] ] ≈ A [ g o A [ h o e (eqa (A [ f o h ]) (A [ g o h ])) ] ] ] - lemma-equ4 {a} {b} {d} f g h = let open ≈-Reasoning (A) in + lemma-equ4 {a} {b} {c} {d} f g h = let open ≈-Reasoning (A) in begin f o ( h o e (eqa (f o h) ( g o h ))) ≈⟨ assoc ⟩ @@ -81,7 +81,7 @@ g o ( h o e (eqa (f o h) ( g o h ))) ∎ lemma-equ5 : {d : Obj A} {h : Hom A d a} → A [ - A [ e (eqa f g) o k (eqa f g) (A [ h o e (eqa (A [ f o h ]) (A [ g o h ])) ]) (lemma-equ4 f g h) ] + A [ e (eqa f g) o k (eqa f g) (A [ h o e (eqa (A [ f o h ]) (A [ g o h ])) ]) (lemma-equ4 {a} {b} {c} f g h) ] ≈ A [ h o e (eqa (A [ f o h ]) (A [ g o h ])) ] ] lemma-equ5 {d} {h} = let open ≈-Reasoning (A) in begin