changeset 842:fa9d5d2b965d

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 02 Apr 2020 12:11:22 +0900 (2020-04-02)
parents 9fa1bf29fbf4
children a73acfdef643
files CCCGraph1.agda
diffstat 1 files changed, 7 insertions(+), 7 deletions(-) [+]
line wrap: on
line diff
--- a/CCCGraph1.agda	Thu Apr 02 11:52:07 2020 +0900
+++ b/CCCGraph1.agda	Thu Apr 02 12:11:22 2020 +0900
@@ -55,9 +55,9 @@
             Id  =  λ{a} → id a ;
             isCategory  = record {
                     isEquivalence =  record {refl = refl ; trans = trans ; sym = sym } ;
-                    identityL  = identityL ; 
-                    identityR  = identityR ; 
-                    o-resp-≈  = o-resp-≈ ; 
+                    identityL  = λ {a b f} → identityL {a} {b} {f} ; 
+                    identityR  = λ {a b f} → identityR {a} {b} {f} ; 
+                    o-resp-≈  = λ {a b c f g h i} → o-resp-≈ {a} {b} {c} {f} {g} {h} {i}  ; 
                     associative  = λ{a b c d f g h } → associative  f g h
                }
            }  where
@@ -71,10 +71,10 @@
                identityR {a} {b} {iv x (id a)} = refl
                identityR {a} {b} {iv π < f , f₁ >} = identityR {a} {b} {f}
                identityR {a} {b} {iv π' < f , f₁ >} = identityR {a} {b} {f₁}
-               identityR {a} {.⊤} {iv (○ .(_ ∧ _)) < f , f₁ >} = refl
-               identityR {a} {b} {iv ε < f , f₁ >} = {!!}
-               identityR {a} {.(_ <= _)} {iv (x *) < f , f₁ >} = {!!}
-               identityR {a} {b} {iv x (iv f f₁)} = {!!} -- cong ( λ k → iv x k ) ( identityR {_} {_} {f} )
+               identityR {a} {⊤} {iv (○ .(_ ∧ _)) < f , f₁ >} = refl
+               identityR {a} {b} {iv ε < f , f₁ >} = cong ( λ k → iv ε k ) ( identityR {_} {_} {< f , f₁ >} )
+               identityR {a} {_} {iv (x *) < f , f₁ >} = cong ( λ k → iv (x *) k ) ( identityR {_} {_} {< f , f₁ >} )
+               identityR {a} {b} {iv x (iv f f₁)} = {!!} -- cong ( λ k → iv x k ) ( identityR {_} {_} {iv f f₁} )
                o-resp-≈  : {A B C : Objs} {f g : Arrows A B} {h i : Arrows B C} →
                             f == g → h == i → (h ・ f) == (i ・ g)
                o-resp-≈  f=g h=i = {!!}