Mercurial > hg > Members > kono > Proof > category
changeset 482:fd752ad25ac0
on going ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 11 Mar 2017 01:35:06 +0900 |
parents | 65e6906782bb |
children | 265f13adf93b |
files | freyd1.agda |
diffstat | 1 files changed, 35 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd1.agda Fri Mar 10 23:57:49 2017 +0900 +++ b/freyd1.agda Sat Mar 11 01:35:06 2017 +0900 @@ -39,37 +39,56 @@ FIA : { I : Category c₁ c₂ ℓ } → ( Γ : Functor I CommaCategory ) → Functor I A FIA {I} Γ = record { - FObj = λ x → obj (FObj Γ x ) ; - FMap = λ {a} {b} f → arrow (FMap Γ f ) ; - isFunctor = record { - identity = λ{x} → {!!} - ; distr = λ {a} {b} {c} {f} {g} → {!!} - ; ≈-cong = λ {a} {b} {c} {f} → {!!} - }} + FObj = λ x → obj (FObj Γ x ) ; + FMap = λ {a} {b} f → arrow (FMap Γ f ) ; + isFunctor = record { + identity = identity + ; distr = IsFunctor.distr (isFunctor Γ) + ; ≈-cong = IsFunctor.≈-cong (isFunctor Γ) + }} where + identity : {x : Obj I } → A [ arrow (FMap Γ (id1 I x)) ≈ id1 A (obj (FObj Γ x)) ] + identity {x} = let open ≈-Reasoning (A) in begin + arrow (FMap Γ (id1 I x)) + ≈⟨ IsFunctor.identity (isFunctor Γ) ⟩ + id1 A (obj (FObj Γ x)) + ∎ -commaLimit : { I : Category c₁ c₂ ℓ } → ( Complete A I) → ( Γ : Functor I CommaCategory ) → Obj CommaCategory + +NIA : { I : Category c₁ c₂ ℓ } → ( Γ : Functor I CommaCategory ) + (c : Obj CommaCategory ) ( ta : NTrans I CommaCategory ( K CommaCategory I c ) Γ ) → NTrans I A ( K A I (obj c) ) (FIA Γ) +NIA {I} Γ c ta = record { + TMap = λ x → arrow (TMap ta x ) + ; isNTrans = record { commute = comm1 } + } where + comm1 : {a b : Obj I} {f : Hom I a b} → + A [ A [ FMap (FIA Γ) f o arrow (TMap ta a) ] ≈ A [ arrow (TMap ta b) o FMap (K A I (obj c)) f ] ] + comm1 {a} {b} {f} = IsNTrans.commute (isNTrans ta ) + +commaLimit : { I : Category c₁ c₂ ℓ } → ( Complete A I) → ( Γ : Functor I CommaCategory ) → Obj CommaCategory commaLimit {I} comp Γ = record { obj = limit-c comp (FIA Γ) ; hom = limitHom } where + ll = ( limit (isLimit comp (FIA Γ)) (limit-c comp (FIA Γ)) {!!}) limitHom : Hom C (FObj F (limit-c comp (FIA Γ ) )) (FObj G (limit-c comp (FIA Γ) )) - limitHom = C [ FMap G ( limit (isLimit comp (FIA Γ)) {!!} {!!} ) o {!!} ] + limitHom = C [ FMap G ll o C [ {!!} o FMap F ll ] ] commaNat : { I : Category c₁ c₂ ℓ } → ( comp : Complete A I) → ( Γ : Functor I CommaCategory ) - → ( ta : NTrans I CommaCategory ( K CommaCategory I (commaLimit comp Γ) ) Γ ) - → NTrans I CommaCategory (K CommaCategory I (commaLimit comp Γ)) Γ -commaNat {I} comp Γ ta = record { + → (c : Obj CommaCategory ) + → ( ta : NTrans I CommaCategory ( K CommaCategory I c ) Γ ) + → NTrans I CommaCategory (K CommaCategory I c) Γ +commaNat {I} comp Γ c ta = record { TMap = λ x → tmap x ; isNTrans = record { commute = {!!} } } where - tmap : (i : Obj I) → Hom CommaCategory (FObj (K CommaCategory I (commaLimit comp Γ)) i) (FObj Γ i) + tmap : (i : Obj I) → Hom CommaCategory (FObj (K CommaCategory I c) i) (FObj Γ i) tmap i = record { - arrow = A [ {!!} o limit ( isLimit comp (FIA Γ ) ) {!!} {!!} ] + arrow = A [ arrow ( TMap ta i) o A [ {!!} o limit ( isLimit comp (FIA Γ ) ) (obj c) ( NIA Γ c ta ) ] ] ; comm = {!!} } commute : {a b : Obj I} {f : Hom I a b} → - CommaCategory [ CommaCategory [ FMap Γ f o tmap a ] ≈ CommaCategory [ tmap b o FMap (K CommaCategory I (commaLimit comp Γ)) f ] ] + CommaCategory [ CommaCategory [ FMap Γ f o tmap a ] ≈ CommaCategory [ tmap b o FMap (K CommaCategory I c) f ] ] commute {a} {b} {f} = {!!} @@ -77,7 +96,7 @@ → ( G-preserve-limit : ( Γ : Functor I A ) ( lim : Obj A ) ( ta : NTrans I A ( K A I lim ) Γ ) → ( limita : Limit A I Γ lim ta ) → Limit C I (G ○ Γ) (FObj G lim) (tb A I Γ lim ta G ) ) → ( Γ : Functor I CommaCategory ) ( ta : NTrans I CommaCategory ( K CommaCategory I (commaLimit comp Γ) ) Γ ) - → Limit CommaCategory I Γ (commaLimit comp Γ ) ( commaNat comp Γ ta ) + → Limit CommaCategory I Γ (commaLimit comp Γ ) ( commaNat comp Γ (commaLimit comp Γ) ta ) hasLimit {I} comp gpresrve Γ ta = record { limit = λ a t → {!!} ; t0f=t = λ {a t i } → {!!} ;