Mercurial > hg > Members > kono > Proof > category
changeset 228:ff596cff8183
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 05 Sep 2013 22:35:31 +0900 |
parents | 591efd381c82 |
children | 68b2681ea9df |
files | equalizer.agda |
diffstat | 1 files changed, 27 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/equalizer.agda Thu Sep 05 21:34:33 2013 +0900 +++ b/equalizer.agda Thu Sep 05 22:35:31 2013 +0900 @@ -394,24 +394,40 @@ c-iso-l : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f ) → Hom A c c' -c-iso-l eqa eqa' eff' eff = let open ≈-Reasoning (A) in k eff' (e eqa) refl-hom +c-iso-l {c} {c'} eqa eqa' eff' eff = let open ≈-Reasoning (A) in k eff' (A [ e eqa o id1 A c ]) refl-hom c-iso-r : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f ) → Hom A c' c -c-iso-r eqa eqa' eff' eff = let open ≈-Reasoning (A) in k eff (e eqa') refl-hom +c-iso-r {c} {c'} eqa eqa' eff' eff = let open ≈-Reasoning (A) in k eff (A [ e eqa' o id1 A c' ]) refl-hom c-iso-1 : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f ) → A [ A [ e (eefeg eqa') o k (eefeg eqa') (id1 A c') (f1=g1 (fe=ge eqa') (id1 A c')) ] ≈ id1 A c' ] c-iso-1 {c} {c'} {a} {b} {f} {g} eqa eqa' eff' eff = let open ≈-Reasoning (A) in begin e (eefeg eqa') o k (eefeg eqa') (id1 A c') (f1=g1 (fe=ge eqa') (id1 A c')) - ≈⟨ {!!} ⟩ - e (eefeg eqa') o k (eefeg eqa') (id1 A c') (f1=g1 (fe=ge eqa') (id1 A c')) ≈⟨ ek=h ( eefeg eqa' )⟩ id1 A c' ∎ +c-iso-2 : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) + → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f ) + → A [ k eqa' ( A [ e eqa' o id1 A c' ] ) (f1=gh (fe=ge eqa' )) ≈ id1 A c' ] +c-iso-2 {c} {c'} {a} {b} {f} {g} eqa eqa' eff' eff = let open ≈-Reasoning (A) in begin + k eqa' ( A [ e eqa' o id1 A c' ] ) (f1=gh (fe=ge eqa' ) ) + ≈⟨ uniqueness eqa' refl-hom ⟩ + id1 A c' + ∎ + +c-iso-3 : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) + → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f ) + → A [ k eff' ( A [ e eff' o id1 A c' ] ) (f1=gh (fe=ge eff')) ≈ id1 A c' ] +c-iso-3 {c} {c'} {a} {b} {f} {g} eqa eqa' eff' eff = let open ≈-Reasoning (A) in begin + k eff' ( A [ e eff' o id1 A c' ] ) (f1=gh (fe=ge eff')) + ≈⟨ uniqueness eff' refl-hom ⟩ + id1 A c' + ∎ + -- e k e k = 1c e e = e -> e = 1c? -- k e k e = 1c' ? @@ -422,7 +438,13 @@ c-iso {c} {c'} {a} {b} {f} {g} eqa eqa' eff' eff = let open ≈-Reasoning (A) in begin c-iso-l eqa eqa' eff' eff o c-iso-r eqa eqa' eff' eff ≈⟨⟩ - k eff' (e eqa) refl-hom o k eff (e eqa') refl-hom + k eff' (e eqa o id1 A c) refl-hom o k eff (e eqa' o id1 A c') refl-hom + ≈⟨ car ( uniqueness eff' ( begin + e eff' o k eff' {!!} {!!} + ≈⟨ {!!} ⟩ + e eqa o id1 A c + ∎ )) ⟩ + {!!} o k eff (e eqa' o id1 A c') refl-hom ≈⟨ {!!} ⟩ id1 A c' ∎