annotate sym2.agda @ 72:09fa2ab75703

add utilties
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 24 Aug 2020 23:06:10 +0900
parents 32004c9a70b1
children 405c1f727ffe
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
68
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1 open import Level hiding ( suc ; zero )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
2 open import Algebra
70
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
3 module sym2 where
68
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
4
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
5 open import Symmetric
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6 open import Data.Unit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
7 open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8 open import Function
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9 open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
10 open import Relation.Nullary
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11 open import Data.Empty
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
12 open import Data.Product
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
14 open import Gutil
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
15 open import Putil
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
16 open import Solvable using (solvable)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
17 open import Relation.Binary.PropositionalEquality hiding ( [_] )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
18
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
19 open import Data.Fin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
20 open import Data.Fin.Permutation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
21
70
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
22 sym2solvable : solvable (Symmetric 2)
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
23 solvable.dervied-length sym2solvable = 1
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
24 solvable.end sym2solvable x d = solved x d where
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
25
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
26 open import Data.List using ( List ; [] ; _∷_ )
68
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
27
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
28 open Solvable (Symmetric 2)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
29 -- open Group (Symmetric 2) using (_⁻¹)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
30
70
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
31 p0 : FL→perm ((# 0) :: ((# 0 ) :: f0)) =p= pid
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
32 p0 = record { peq = p00 } where
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
33 p00 : (q : Fin 2) → (FL→perm ((# 0) :: ((# 0) :: f0)) ⟨$⟩ʳ q) ≡ (pid ⟨$⟩ʳ q)
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
34 p00 zero = refl
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
35 p00 (suc zero) = refl
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
36
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
37 p1 : Permutation 2 2
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
38 p1 = FL→perm ((# 1) :: ((# 0 ) :: f0))
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
39
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
40 p1rev : (p1 ∘ₚ p1 ) =p= pid
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
41 p1rev = record { peq = p01 } where
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
42 p01 : (q : Fin 2) → ((p1 ∘ₚ p1) ⟨$⟩ʳ q) ≡ (pid ⟨$⟩ʳ q)
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
43 p01 zero = refl
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
44 p01 (suc zero) = refl
68
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
45
70
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
46 open _=p=_
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
47
68
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
48 sym2lem0 : ( g h : Permutation 2 2 ) → (q : Fin 2) → ([ g , h ] ⟨$⟩ʳ q) ≡ (pid ⟨$⟩ʳ q)
70
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
49 sym2lem0 g h q with perm→FL g | perm→FL h | inspect perm→FL g
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
50 sym2lem0 g h q | zero :: (zero :: f0) | _ | record { eq = g=00} = begin
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
51 [ g , h ] ⟨$⟩ʳ q
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
52 ≡⟨⟩
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
53 h ⟨$⟩ʳ (g ⟨$⟩ʳ ( h ⟨$⟩ˡ ( g ⟨$⟩ˡ q )))
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
54 ≡⟨ cong (λ k → h ⟨$⟩ʳ (g ⟨$⟩ʳ ( h ⟨$⟩ˡ k))) ((peqˡ sym2lem1 _ )) ⟩
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
55 h ⟨$⟩ʳ (g ⟨$⟩ʳ ( h ⟨$⟩ˡ ( pid ⟨$⟩ˡ q )))
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
56 ≡⟨ cong (λ k → h ⟨$⟩ʳ k ) (peq sym2lem1 _ ) ⟩
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
57 h ⟨$⟩ʳ (pid ⟨$⟩ʳ ( h ⟨$⟩ˡ ( pid ⟨$⟩ˡ q )))
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
58 ≡⟨⟩
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
59 [ pid , h ] ⟨$⟩ʳ q
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
60 ≡⟨ peq (idcomtl h) q ⟩
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
61 q
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
62 ∎ where
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
63 open ≡-Reasoning
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
64 postulate sym2lem1 : g =p= pid
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
65 -- it works but very slow
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
66 -- sym2lem1 = ptrans (psym ( FL←iso g )) (subst (λ k → FL→perm k =p= pid) (sym g=00) p0 )
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
67 sym2lem0 g h q | _ | zero :: (zero :: f0) | record { eq = g=00} = begin
69
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 68
diff changeset
68 [ g , h ] ⟨$⟩ʳ q
70
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
69 ≡⟨⟩
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
70 h ⟨$⟩ʳ (g ⟨$⟩ʳ ( h ⟨$⟩ˡ ( g ⟨$⟩ˡ q )))
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
71 ≡⟨ peq sym2lem2 _ ⟩
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
72 pid ⟨$⟩ʳ (g ⟨$⟩ʳ ( h ⟨$⟩ˡ ( g ⟨$⟩ˡ q )))
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
73 ≡⟨ cong (λ k → pid ⟨$⟩ʳ (g ⟨$⟩ʳ k)) ((peqˡ sym2lem2 _ )) ⟩
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
74 pid ⟨$⟩ʳ (g ⟨$⟩ʳ ( pid ⟨$⟩ˡ ( g ⟨$⟩ˡ q )))
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
75 ≡⟨⟩
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
76 [ g , pid ] ⟨$⟩ʳ q
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
77 ≡⟨ peq (idcomtr g) q ⟩
69
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 68
diff changeset
78 q
70
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
79 ∎ where
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
80 open ≡-Reasoning
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
81 postulate sym2lem2 : h =p= pid
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
82 sym2lem0 g h q | suc zero :: (zero :: f0) | suc zero :: (zero :: f0) | _ = begin
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
83 [ g , h ] ⟨$⟩ʳ q
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
84 ≡⟨⟩
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
85 h ⟨$⟩ʳ (g ⟨$⟩ʳ ( h ⟨$⟩ˡ ( g ⟨$⟩ˡ q )))
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
86 ≡⟨ peq sym2lem3 _ ⟩
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
87 pid ⟨$⟩ʳ ( h ⟨$⟩ˡ ( g ⟨$⟩ˡ q ))
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
88 ≡⟨ cong (λ k → pid ⟨$⟩ʳ k) (peq sym2lem4 _ )⟩
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
89 pid ⟨$⟩ʳ ( pid ⟨$⟩ˡ q )
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
90 ≡⟨⟩
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
91 q
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
92 ∎ where
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
93 open ≡-Reasoning
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
94 postulate
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
95 sym2lem3 : (g ∘ₚ h ) =p= pid
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
96 sym2lem4 : (pinv g ∘ₚ pinv h ) =p= pid
68
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
97 solved : (x : Permutation 2 2) → Commutator (λ x₁ → Lift (Level.suc Level.zero) ⊤) x → x =p= pid
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
98 solved x uni = prefl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
99 solved x (comm {g} {h} _ _) = record { peq = sym2lem0 g h }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
100 solved x (gen {f} {g} d d₁) with solved f d | solved g d₁
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
101 ... | record { peq = f=e } | record { peq = g=e } = record { peq = λ q → genlem q } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
102 genlem : ( q : Fin 2 ) → g ⟨$⟩ʳ ( f ⟨$⟩ʳ q ) ≡ q
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
103 genlem q = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
104 g ⟨$⟩ʳ ( f ⟨$⟩ʳ q )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
105 ≡⟨ g=e ( f ⟨$⟩ʳ q ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
106 f ⟨$⟩ʳ q
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
107 ≡⟨ f=e q ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
108 q
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
109 ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
110 solved x (ccong {f} {g} (record {peq = f=g}) d) with solved f d
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
111 ... | record { peq = f=e } = record { peq = λ q → cc q } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
112 cc : ( q : Fin 2 ) → x ⟨$⟩ʳ q ≡ q
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
113 cc q = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
114 x ⟨$⟩ʳ q
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
115 ≡⟨ sym (f=g q) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
116 f ⟨$⟩ʳ q
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
117 ≡⟨ f=e q ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
118 q
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
119 ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
120
70
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
121 -- ¬sym5solvable : ¬ ( solvable (Symmetric 5) )
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
122 -- ¬sym5solvable sol = {!!}
68
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
123
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
124
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
125