Mercurial > hg > Members > kono > Proof > galois
changeset 69:fb1ccedf5853
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 24 Aug 2020 20:01:18 +0900 |
parents | c184003e517d |
children | 32004c9a70b1 |
files | sym5.agda |
diffstat | 1 files changed, 28 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/sym5.agda Mon Aug 24 18:55:37 2020 +0900 +++ b/sym5.agda Mon Aug 24 20:01:18 2020 +0900 @@ -26,6 +26,8 @@ open Solvable (Symmetric 2) -- open Group (Symmetric 2) using (_⁻¹) + f2-⊥ : (x : Fin 2 ) → x ≡ zero → x ≡ suc zero → ⊥ + f2-⊥ x refl () s2 : ( g : Permutation 2 2 ) → g =p= pinv g s2 g = record { peq = λ q → s2lem q } where s2lem : (q : Fin 2) → (g ⟨$⟩ʳ q) ≡ (pinv g ⟨$⟩ʳ q) @@ -39,25 +41,35 @@ ≡⟨⟩ pinv g ⟨$⟩ʳ zero ∎ where open ≡-Reasoning - s2lem zero | suc zero | record { eq = e2 } = begin - suc zero - ≡⟨ {!!} ⟩ - g ⟨$⟩ʳ zero - ≡⟨ {!!} ⟩ - g ⟨$⟩ˡ (g ⟨$⟩ʳ ( g ⟨$⟩ˡ zero )) - ≡⟨ {!!} ⟩ - g ⟨$⟩ˡ zero - ≡⟨⟩ - pinv g ⟨$⟩ʳ zero + s2lem zero | suc zero | record { eq = e2 } = sym shlem1 where + shlem1 : pinv g ⟨$⟩ʳ zero ≡ suc zero + shlem1 with g ⟨$⟩ˡ zero | inspect (_⟨$⟩ˡ_ g ) zero | inverseʳ g {zero} + shlem1 | zero | record { eq = e1 } | u = ⊥-elim (f2-⊥ _ u e2 ) + shlem1 | suc zero | s | u = refl + s2lem (suc zero) with g ⟨$⟩ʳ suc zero | inspect (_⟨$⟩ʳ_ g ) (suc zero) + s2lem (suc zero) | zero | record { eq = e1 } = sym shlem2 where + shlem2 : pinv g ⟨$⟩ʳ suc zero ≡ zero + shlem2 with g ⟨$⟩ˡ suc zero | inspect (_⟨$⟩ˡ_ g ) (suc zero ) | inverseʳ g {suc zero} + shlem2 | suc zero | record { eq = e2 } | u = ⊥-elim (f2-⊥ _ e1 u ) + shlem2 | zero | s | u = refl + s2lem (suc zero) | suc zero | record { eq = e2 } = begin + suc zero + ≡⟨ sym (inverseˡ g ) ⟩ + g ⟨$⟩ˡ ( g ⟨$⟩ʳ suc zero ) + ≡⟨ cong ( λ k → g ⟨$⟩ˡ k ) e2 ⟩ + pinv g ⟨$⟩ʳ suc zero ∎ where open ≡-Reasoning - s2lem (suc zero) = {!!} sym2lem0 : ( g h : Permutation 2 2 ) → (q : Fin 2) → ([ g , h ] ⟨$⟩ʳ q) ≡ (pid ⟨$⟩ʳ q) - sym2lem0 g h q with perm→FL g | perm→FL h - sym2lem0 g h q | zero :: (zero :: f0) | zero :: (zero :: f0) = {!!} - sym2lem0 g h q | zero :: (zero :: f0) | suc zero :: (zero :: f0) = {!!} - sym2lem0 g h q | suc zero :: (zero :: f0) | zero :: (zero :: f0) = {!!} - sym2lem0 g h q | suc zero :: (zero :: f0) | suc zero :: (zero :: f0) = {!!} + sym2lem0 g h q = begin + [ g , h ] ⟨$⟩ʳ q + ≡⟨⟩ + h ⟨$⟩ʳ ( g ⟨$⟩ʳ ( h ⟨$⟩ˡ ( g ⟨$⟩ˡ q ))) + ≡⟨ {!!} ⟩ + q + ≡⟨⟩ + pid ⟨$⟩ʳ q + ∎ where open ≡-Reasoning solved : (x : Permutation 2 2) → Commutator (λ x₁ → Lift (Level.suc Level.zero) ⊤) x → x =p= pid solved x uni = prefl solved x (comm {g} {h} _ _) = record { peq = sym2lem0 g h }