annotate sym3.agda @ 72:09fa2ab75703

add utilties
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 24 Aug 2020 23:06:10 +0900
parents 32004c9a70b1
children 405c1f727ffe
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
68
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1 open import Level hiding ( suc ; zero )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
2 open import Algebra
70
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
3 module sym3 where
68
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
4
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
5 open import Symmetric
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6 open import Data.Unit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
7 open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8 open import Function
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9 open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
10 open import Relation.Nullary
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11 open import Data.Empty
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
12 open import Data.Product
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
14 open import Gutil
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
15 open import Putil
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
16 open import Solvable using (solvable)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
17 open import Relation.Binary.PropositionalEquality hiding ( [_] )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
18
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
19 open import Data.Fin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
20 open import Data.Fin.Permutation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
21
70
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
22 sym3solvable : solvable (Symmetric 3)
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
23 solvable.dervied-length sym3solvable = 2
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
24 solvable.end sym3solvable x d = solved1 x d where
68
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
25
70
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
26 open import Data.List using ( List ; [] ; _∷_ )
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
27
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
28 open Solvable (Symmetric 3)
68
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
29 -- open Group (Symmetric 2) using (_⁻¹)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
30
70
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
31 p0 : FL→perm ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) =p= pid
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
32 p0 = record { peq = p00 } where
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
33 p00 : (q : Fin 3) → (FL→perm ((# 0) :: ((# 0) :: ((# 0) :: f0))) ⟨$⟩ʳ q) ≡ (pid ⟨$⟩ʳ q)
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
34 p00 zero = refl
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
35 p00 (suc zero) = refl
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
36 p00 (suc (suc zero)) = refl
68
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
37
70
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
38 open _=p=_
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
39
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
40 solved1 : (x : Permutation 3 3) → Commutator (λ x₁ → Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x₁) x → x =p= pid
32004c9a70b1 sym2 done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
41 solved1 = {!!}