Mercurial > hg > Members > kono > Proof > galois
annotate src/Gutil0.agda @ 271:c209aebeab2a
Fundamental again
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 24 Jan 2023 16:40:39 +0900 |
parents | c4458b479a0f |
children | 386ece574509 |
rev | line source |
---|---|
257
d500309866da
fundamental theorem on homomorphisms
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
1 open import Level hiding ( suc ; zero ) |
264 | 2 module Gutil0 where |
257
d500309866da
fundamental theorem on homomorphisms
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
3 |
d500309866da
fundamental theorem on homomorphisms
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
4 open import Algebra |
d500309866da
fundamental theorem on homomorphisms
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
5 open import Algebra.Structures |
d500309866da
fundamental theorem on homomorphisms
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
6 open import Algebra.Definitions |
d500309866da
fundamental theorem on homomorphisms
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
7 open import Data.Product |
d500309866da
fundamental theorem on homomorphisms
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
8 open import Relation.Binary.PropositionalEquality |
d500309866da
fundamental theorem on homomorphisms
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
9 open import Algebra.Morphism.Structures |
264 | 10 open import Data.Empty |
11 open import Relation.Nullary | |
12 | |
257
d500309866da
fundamental theorem on homomorphisms
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
13 open GroupMorphisms |
d500309866da
fundamental theorem on homomorphisms
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
14 |
264 | 15 GR : {c l : Level } → Group c l → RawGroup c l |
16 GR G = record { | |
257
d500309866da
fundamental theorem on homomorphisms
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
17 Carrier = Carrier G |
d500309866da
fundamental theorem on homomorphisms
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
18 ; _≈_ = _≈_ G |
d500309866da
fundamental theorem on homomorphisms
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
19 ; _∙_ = _∙_ G |
d500309866da
fundamental theorem on homomorphisms
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
20 ; ε = ε G |
d500309866da
fundamental theorem on homomorphisms
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
21 ; _⁻¹ = _⁻¹ G |
d500309866da
fundamental theorem on homomorphisms
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
22 } where open Group |
d500309866da
fundamental theorem on homomorphisms
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
23 |
264 | 24 record GAxiom {c l : Level } (G : Group c l) : Set ( c Level.⊔ l ) where |
25 open Group G | |
26 field | |
27 ∙-cong : {x y u v : Carrier } → x ≈ y → u ≈ v → x ∙ u ≈ y ∙ v | |
28 assoc : (x y z : Carrier ) → x ∙ y ∙ z ≈ x ∙ ( y ∙ z ) | |
29 identity : ((y : Carrier) → ε ∙ y ≈ y ) × ((y : Carrier) → y ∙ ε ≈ y ) | |
30 inverse : ((y : Carrier) → y ⁻¹ ∙ y ≈ ε ) × ((y : Carrier) → y ∙ y ⁻¹ ≈ ε ) | |
31 ⁻¹-cong : {x y : Carrier } → x ≈ y → x ⁻¹ ≈ y ⁻¹ | |
32 | |
33 GA : {c l : Level } → (G : Group c l) → GAxiom G | |
34 GA G = record { | |
35 ∙-cong = IsMagma.∙-cong ( IsSemigroup.isMagma ( IsMonoid.isSemigroup ( IsGroup.isMonoid isGroup))) | |
36 ; assoc = IsSemigroup.assoc ( IsMonoid.isSemigroup ( IsGroup.isMonoid isGroup)) | |
37 ; identity = IsMonoid.identity ( IsGroup.isMonoid isGroup) | |
38 ; inverse = IsGroup.inverse isGroup | |
39 ; ⁻¹-cong = IsGroup.⁻¹-cong isGroup | |
40 } where open Group G | |
41 | |
42 open import Relation.Binary.Structures | |
43 | |
44 Eq : {c l : Level } → (G : Group c l) → IsEquivalence _ | |
45 Eq G = IsMagma.isEquivalence (IsSemigroup.isMagma (IsMonoid.isSemigroup | |
46 (IsGroup.isMonoid (Group.isGroup G ))) ) | |
47 | |
48 grefl : {c l : Level } → (G : Group c l ) → {x : Group.Carrier G} → Group._≈_ G x x | |
49 grefl G = IsGroup.refl ( Group.isGroup G ) | |
50 | |
51 gsym : {c l : Level } → (G : Group c l ) → {x y : Group.Carrier G} → Group._≈_ G x y → Group._≈_ G y x | |
52 gsym G = IsGroup.sym ( Group.isGroup G ) | |
53 | |
54 gtrans : {c l : Level } → (G : Group c l ) → {x y z : Group.Carrier G} → Group._≈_ G x y → Group._≈_ G y z → Group._≈_ G x z | |
55 gtrans G = IsGroup.trans ( Group.isGroup G ) | |
56 | |
271 | 57 -- record NormalSubGroup {c l : Level } ( G : Group c l ) : Set ( c Level.⊔ l ) where |
58 -- open Group G | |
59 -- field | |
60 -- sub : Carrier → Carrier | |
61 -- s-homo : IsGroupHomomorphism (GR G) (GR G) sub | |
62 -- commute : ( g n : Carrier ) → g ∙ sub n ≈ sub n ∙ g | |
63 -- -- it has at least one element other than ε | |
64 -- -- anElement : Carrier | |
65 -- -- notE : ¬ ( Group._≈_ G anElement (Group.ε G) ) | |
259 | 66 |
264 | 67 -- open import Relation.Binary.Morphism.Structures |
259 | 68 |
69 import Relation.Binary.Reasoning.Setoid as EqReasoning | |
70 | |
271 | 71 -- record HomoMorphism {c l : Level } (G : Group c l) (f : Group.Carrier G → Group.Carrier G) : Set ( c Level.⊔ l ) where |
72 -- open Group G | |
73 -- field | |
74 -- f-cong : {x y : Carrier } → x ≈ y → f x ≈ f y | |
75 -- f-homo : (x y : Carrier ) → f ( x ∙ y ) ≈ f x ∙ f y | |
76 -- f-ε : f ( ε ) ≈ ε | |
77 -- f-inv : (x : Carrier) → f ( x ⁻¹ ) ≈ (f x ) ⁻¹ | |
259 | 78 |
264 | 79 -- HM : {c l : Level } → (G : Group c l ) → (f : Group.Carrier G → Group.Carrier G ) |
80 -- → IsGroupHomomorphism (GR G) (GR G) f → HomoMorphism G f | |
81 -- HM G f homo = record { | |
82 -- f-cong = λ eq → IsRelHomomorphism.cong ( IsMagmaHomomorphism.isRelHomomorphism | |
83 -- ( IsMonoidHomomorphism.isMagmaHomomorphism ( IsGroupHomomorphism.isMonoidHomomorphism homo))) eq | |
84 -- ; f-homo = IsMagmaHomomorphism.homo (IsMonoidHomomorphism.isMagmaHomomorphism ( IsGroupHomomorphism.isMonoidHomomorphism homo)) | |
85 -- ; f-ε = IsMonoidHomomorphism.ε-homo ( IsGroupHomomorphism.isMonoidHomomorphism homo) | |
86 -- ; f-inv = IsGroupHomomorphism.⁻¹-homo homo | |
87 -- } | |
88 -- | |
89 -- open HomoMorphism | |
90 -- | |
91 -- hm : {c l : Level } → (G : Group c l ) → (f : Group.Carrier G → Group.Carrier G ) | |
92 -- → HomoMorphism G f | |
93 -- → IsGroupHomomorphism (GR G) (GR G) f | |
94 -- hm G f hm = record { isMonoidHomomorphism = record { isMagmaHomomorphism = record { | |
95 -- isRelHomomorphism = record { cong = λ {x} {y} eq → f-cong hm {x} {y} eq } | |
96 -- ; homo = f-homo hm } ; ε-homo = f-ε hm } ; ⁻¹-homo = f-inv hm | |
97 -- } | |
98 -- |