annotate src/nat.agda @ 318:fff18d4a063b

use stdlib-2.0 and safe-mode
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 18 Sep 2023 13:19:37 +0900
parents 891869ead775
children
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
318
fff18d4a063b use stdlib-2.0 and safe-mode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 314
diff changeset
1 {-# OPTIONS --cubical-compatible --safe #-}
fff18d4a063b use stdlib-2.0 and safe-mode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 314
diff changeset
2
72
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3 module nat where
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
4
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
5 open import Data.Nat
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6 open import Data.Nat.Properties
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
7 open import Data.Empty
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8 open import Relation.Nullary
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9 open import Relation.Binary.PropositionalEquality
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
10 open import Relation.Binary.Core
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
11 open import Relation.Binary.Definitions
72
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
12 open import logic
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
13 open import Level hiding ( zero ; suc )
72
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
14
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
15 nat-<> : { x y : ℕ } → x < y → y < x → ⊥
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
16 nat-<> (s≤s x<y) (s≤s y<x) = nat-<> x<y y<x
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
17
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
18 nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
19 nat-≤> (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
20
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
21 nat-<≡ : { x : ℕ } → x < x → ⊥
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
22 nat-<≡ (s≤s lt) = nat-<≡ lt
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
23
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
24 nat-≡< : { x y : ℕ } → x ≡ y → x < y → ⊥
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
25 nat-≡< refl lt = nat-<≡ lt
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
26
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
27 ¬a≤a : {la : ℕ} → suc la ≤ la → ⊥
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
28 ¬a≤a (s≤s lt) = ¬a≤a lt
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
29
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
30 a<sa : {la : ℕ} → la < suc la
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
31 a<sa {zero} = s≤s z≤n
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
32 a<sa {suc la} = s≤s a<sa
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
33
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
34 =→¬< : {x : ℕ } → ¬ ( x < x )
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
35 =→¬< {zero} ()
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
36 =→¬< {suc x} (s≤s lt) = =→¬< lt
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
37
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
38 >→¬< : {x y : ℕ } → (x < y ) → ¬ ( y < x )
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
39 >→¬< (s≤s x<y) (s≤s y<x) = >→¬< x<y y<x
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
40
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
41 <-∨ : { x y : ℕ } → x < suc y → ( (x ≡ y ) ∨ (x < y) )
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
42 <-∨ {zero} {zero} (s≤s z≤n) = case1 refl
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
43 <-∨ {zero} {suc y} (s≤s lt) = case2 (s≤s z≤n)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
44 <-∨ {suc x} {zero} (s≤s ())
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
45 <-∨ {suc x} {suc y} (s≤s lt) with <-∨ {x} {y} lt
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
46 <-∨ {suc x} {suc y} (s≤s lt) | case1 eq = case1 (cong (λ k → suc k ) eq)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
47 <-∨ {suc x} {suc y} (s≤s lt) | case2 lt1 = case2 (s≤s lt1)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
48
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
49 ≤-∨ : { x y : ℕ } → x ≤ y → ( (x ≡ y ) ∨ (x < y) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
50 ≤-∨ {zero} {zero} z≤n = case1 refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
51 ≤-∨ {zero} {suc y} z≤n = case2 (s≤s z≤n)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
52 ≤-∨ {suc x} {zero} ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
53 ≤-∨ {suc x} {suc y} (s≤s lt) with ≤-∨ {x} {y} lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
54 ≤-∨ {suc x} {suc y} (s≤s lt) | case1 eq = case1 (cong (λ k → suc k ) eq)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
55 ≤-∨ {suc x} {suc y} (s≤s lt) | case2 lt1 = case2 (s≤s lt1)
210
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 112
diff changeset
56
72
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
57 max : (x y : ℕ) → ℕ
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
58 max zero zero = zero
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
59 max zero (suc x) = (suc x)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
60 max (suc x) zero = (suc x)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
61 max (suc x) (suc y) = suc ( max x y )
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
62
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
63 x≤max : (x y : ℕ) → x ≤ max x y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
64 x≤max zero zero = ≤-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
65 x≤max zero (suc x) = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
66 x≤max (suc x) zero = ≤-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
67 x≤max (suc x) (suc y) = s≤s( x≤max x y )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
68
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
69 y≤max : (x y : ℕ) → y ≤ max x y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
70 y≤max zero zero = ≤-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
71 y≤max zero (suc x) = ≤-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
72 y≤max (suc x) zero = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
73 y≤max (suc x) (suc y) = s≤s( y≤max x y )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
74
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
75 x≤y→max=y : (x y : ℕ) → x ≤ y → max x y ≡ y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
76 x≤y→max=y zero zero x≤y = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
77 x≤y→max=y zero (suc y) x≤y = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
78 x≤y→max=y (suc x) (suc y) (s≤s x≤y) = cong suc (x≤y→max=y x y x≤y )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
79
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
80 y≤x→max=x : (x y : ℕ) → y ≤ x → max x y ≡ x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
81 y≤x→max=x zero zero y≤x = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
82 y≤x→max=x zero (suc y) ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
83 y≤x→max=x (suc x) zero lt = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
84 y≤x→max=x (suc x) (suc y) (s≤s y≤x) = cong suc (y≤x→max=x x y y≤x )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
85
72
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
86 -- _*_ : ℕ → ℕ → ℕ
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
87 -- _*_ zero _ = zero
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
88 -- _*_ (suc n) m = m + ( n * m )
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
89
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
90 -- x ^ y
72
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
91 exp : ℕ → ℕ → ℕ
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
92 exp _ zero = 1
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
93 exp n (suc m) = n * ( exp n m )
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
94
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
95 div2 : ℕ → (ℕ ∧ Bool )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
96 div2 zero = ⟪ 0 , false ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
97 div2 (suc zero) = ⟪ 0 , true ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
98 div2 (suc (suc n)) = ⟪ suc (proj1 (div2 n)) , proj2 (div2 n) ⟫ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
99 open _∧_
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
100
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
101 div2-rev : (ℕ ∧ Bool ) → ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
102 div2-rev ⟪ x , true ⟫ = suc (x + x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
103 div2-rev ⟪ x , false ⟫ = x + x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
104
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
105 div2-eq : (x : ℕ ) → div2-rev ( div2 x ) ≡ x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
106 div2-eq zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
107 div2-eq (suc zero) = refl
318
fff18d4a063b use stdlib-2.0 and safe-mode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 314
diff changeset
108 div2-eq (suc (suc x)) with div2 x in eq1
fff18d4a063b use stdlib-2.0 and safe-mode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 314
diff changeset
109 ... | ⟪ x1 , true ⟫ = begin -- eq1 : div2 x ≡ ⟪ x1 , true ⟫
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
110 div2-rev ⟪ suc x1 , true ⟫ ≡⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
111 suc (suc (x1 + suc x1)) ≡⟨ cong (λ k → suc (suc k )) (+-comm x1 _ ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
112 suc (suc (suc (x1 + x1))) ≡⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
113 suc (suc (div2-rev ⟪ x1 , true ⟫)) ≡⟨ cong (λ k → suc (suc (div2-rev k ))) (sym eq1) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
114 suc (suc (div2-rev (div2 x))) ≡⟨ cong (λ k → suc (suc k)) (div2-eq x) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
115 suc (suc x) ∎ where open ≡-Reasoning
318
fff18d4a063b use stdlib-2.0 and safe-mode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 314
diff changeset
116 ... | ⟪ x1 , false ⟫ = begin
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
117 div2-rev ⟪ suc x1 , false ⟫ ≡⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
118 suc (x1 + suc x1) ≡⟨ cong (λ k → (suc k )) (+-comm x1 _ ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
119 suc (suc (x1 + x1)) ≡⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
120 suc (suc (div2-rev ⟪ x1 , false ⟫)) ≡⟨ cong (λ k → suc (suc (div2-rev k ))) (sym eq1) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
121 suc (suc (div2-rev (div2 x))) ≡⟨ cong (λ k → suc (suc k)) (div2-eq x) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
122 suc (suc x) ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
123
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
124 sucprd : {i : ℕ } → 0 < i → suc (pred i) ≡ i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
125 sucprd {suc i} 0<i = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
126
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
127 0<s : {x : ℕ } → zero < suc x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
128 0<s {_} = s≤s z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
129
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
130 px<py : {x y : ℕ } → pred x < pred y → x < y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
131 px<py {zero} {suc y} lt = 0<s
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
132 px<py {suc zero} {suc (suc y)} (s≤s lt) = s≤s 0<s
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
133 px<py {suc (suc x)} {suc (suc y)} (s≤s lt) = s≤s (px<py {suc x} {suc y} lt)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
134
72
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
135 minus : (a b : ℕ ) → ℕ
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
136 minus a zero = a
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
137 minus zero (suc b) = zero
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
138 minus (suc a) (suc b) = minus a b
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
139
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
140 _-_ = minus
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
141
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
142 sn-m=sn-m : {m n : ℕ } → m ≤ n → suc n - m ≡ suc ( n - m )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
143 sn-m=sn-m {0} {n} z≤n = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
144 sn-m=sn-m {suc m} {suc n} (s≤s m<n) = sn-m=sn-m m<n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
145
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
146 si-sn=i-n : {i n : ℕ } → n < i → suc (i - suc n) ≡ (i - n)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
147 si-sn=i-n {i} {n} n<i = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
148 suc (i - suc n) ≡⟨ sym (sn-m=sn-m n<i ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
149 suc i - suc n ≡⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
150 i - n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
151 ∎ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
152 open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
153
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
154 refl-≤s : {x : ℕ } → x ≤ suc x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
155 refl-≤s {zero} = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
156 refl-≤s {suc x} = s≤s (refl-≤s {x})
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
157
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
158 a≤sa = refl-≤s
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
159
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
160 n-m<n : (n m : ℕ ) → n - m ≤ n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
161 n-m<n zero zero = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
162 n-m<n (suc n) zero = s≤s (n-m<n n zero)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
163 n-m<n zero (suc m) = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
164 n-m<n (suc n) (suc m) = ≤-trans (n-m<n n m ) refl-≤s
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
165
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
166 n-n-m=m : {m n : ℕ } → m ≤ n → m ≡ (n - (n - m))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
167 n-n-m=m {0} {zero} z≤n = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
168 n-n-m=m {0} {suc n} z≤n = n-n-m=m {0} {n} z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
169 n-n-m=m {suc m} {suc n} (s≤s m≤n) = sym ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
170 suc n - ( n - m ) ≡⟨ sn-m=sn-m (n-m<n n m) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
171 suc (n - ( n - m )) ≡⟨ cong (λ k → suc k ) (sym (n-n-m=m m≤n)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
172 suc m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
173 ∎ ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
174 open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
175
72
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
176 m+= : {i j m : ℕ } → m + i ≡ m + j → i ≡ j
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
177 m+= {i} {j} {zero} refl = refl
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
178 m+= {i} {j} {suc m} eq = m+= {i} {j} {m} ( cong (λ k → pred k ) eq )
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
179
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
180 +m= : {i j m : ℕ } → i + m ≡ j + m → i ≡ j
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
181 +m= {i} {j} {m} eq = m+= ( subst₂ (λ j k → j ≡ k ) (+-comm i _ ) (+-comm j _ ) eq )
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
182
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
183 less-1 : { n m : ℕ } → suc n < m → n < m
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
184 less-1 {zero} {suc (suc _)} (s≤s (s≤s z≤n)) = s≤s z≤n
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
185 less-1 {suc n} {suc m} (s≤s lt) = s≤s (less-1 {n} {m} lt)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
186
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
187 sa=b→a<b : { n m : ℕ } → suc n ≡ m → n < m
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
188 sa=b→a<b {0} {suc zero} refl = s≤s z≤n
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
189 sa=b→a<b {suc n} {suc (suc n)} refl = s≤s (sa=b→a<b refl)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
190
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
191 minus+n : {x y : ℕ } → suc x > y → minus x y + y ≡ x
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
192 minus+n {x} {zero} _ = trans (sym (+-comm zero _ )) refl
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
193 minus+n {zero} {suc y} (s≤s ())
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
194 minus+n {suc x} {suc y} (s≤s lt) = begin
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
195 minus (suc x) (suc y) + suc y
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
196 ≡⟨ +-comm _ (suc y) ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
197 suc y + minus x y
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
198 ≡⟨ cong ( λ k → suc k ) (
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
199 begin
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
200 y + minus x y
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
201 ≡⟨ +-comm y _ ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
202 minus x y + y
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
203 ≡⟨ minus+n {x} {y} lt ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
204 x
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
205
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
206 ) ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
207 suc x
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
208 ∎ where open ≡-Reasoning
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
209
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
210 <-minus-0 : {x y z : ℕ } → z + x < z + y → x < y
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
211 <-minus-0 {x} {suc _} {zero} lt = lt
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
212 <-minus-0 {x} {y} {suc z} (s≤s lt) = <-minus-0 {x} {y} {z} lt
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
213
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
214 <-minus : {x y z : ℕ } → x + z < y + z → x < y
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
215 <-minus {x} {y} {z} lt = <-minus-0 ( subst₂ ( λ j k → j < k ) (+-comm x _) (+-comm y _ ) lt )
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
216
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
217 x≤x+y : {z y : ℕ } → z ≤ z + y
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
218 x≤x+y {zero} {y} = z≤n
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
219 x≤x+y {suc z} {y} = s≤s (x≤x+y {z} {y})
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
220
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
221 x≤y+x : {z y : ℕ } → z ≤ y + z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
222 x≤y+x {z} {y} = subst (λ k → z ≤ k ) (+-comm _ y ) x≤x+y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
223
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
224 x≤x+sy : {x y : ℕ} → x < x + suc y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
225 x≤x+sy {x} {y} = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
226 suc x ≤⟨ x≤x+y ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
227 suc x + y ≡⟨ cong (λ k → k + y) (+-comm 1 x ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
228 (x + 1) + y ≡⟨ (+-assoc x 1 _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
229 x + suc y ∎ where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
230
72
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
231 <-plus : {x y z : ℕ } → x < y → x + z < y + z
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
232 <-plus {zero} {suc y} {z} (s≤s z≤n) = s≤s (subst (λ k → z ≤ k ) (+-comm z _ ) x≤x+y )
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
233 <-plus {suc x} {suc y} {z} (s≤s lt) = s≤s (<-plus {x} {y} {z} lt)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
234
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
235 <-plus-0 : {x y z : ℕ } → x < y → z + x < z + y
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
236 <-plus-0 {x} {y} {z} lt = subst₂ (λ j k → j < k ) (+-comm _ z) (+-comm _ z) ( <-plus {x} {y} {z} lt )
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
237
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
238 ≤-plus : {x y z : ℕ } → x ≤ y → x + z ≤ y + z
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
239 ≤-plus {0} {y} {zero} z≤n = z≤n
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
240 ≤-plus {0} {y} {suc z} z≤n = subst (λ k → z < k ) (+-comm _ y ) x≤x+y
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
241 ≤-plus {suc x} {suc y} {z} (s≤s lt) = s≤s ( ≤-plus {x} {y} {z} lt )
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
242
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
243 ≤-plus-0 : {x y z : ℕ } → x ≤ y → z + x ≤ z + y
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
244 ≤-plus-0 {x} {y} {zero} lt = lt
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
245 ≤-plus-0 {x} {y} {suc z} lt = s≤s ( ≤-plus-0 {x} {y} {z} lt )
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
246
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
247 x+y<z→x<z : {x y z : ℕ } → x + y < z → x < z
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
248 x+y<z→x<z {zero} {y} {suc z} (s≤s lt1) = s≤s z≤n
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
249 x+y<z→x<z {suc x} {y} {suc z} (s≤s lt1) = s≤s ( x+y<z→x<z {x} {y} {z} lt1 )
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
250
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
251 *≤ : {x y z : ℕ } → x ≤ y → x * z ≤ y * z
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
252 *≤ lt = *-mono-≤ lt ≤-refl
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
253
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
254 *< : {x y z : ℕ } → x < y → x * suc z < y * suc z
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
255 *< {zero} {suc y} lt = s≤s z≤n
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
256 *< {suc x} {suc y} (s≤s lt) = <-plus-0 (*< lt)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
257
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
258 <to<s : {x y : ℕ } → x < y → x < suc y
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
259 <to<s {zero} {suc y} (s≤s lt) = s≤s z≤n
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
260 <to<s {suc x} {suc y} (s≤s lt) = s≤s (<to<s {x} {y} lt)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
261
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
262 <tos<s : {x y : ℕ } → x < y → suc x < suc y
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
263 <tos<s {zero} {suc y} (s≤s z≤n) = s≤s (s≤s z≤n)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
264 <tos<s {suc x} {suc y} (s≤s lt) = s≤s (<tos<s {x} {y} lt)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
265
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
266 <to≤ : {x y : ℕ } → x < y → x ≤ y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
267 <to≤ {zero} {suc y} (s≤s z≤n) = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
268 <to≤ {suc x} {suc y} (s≤s lt) = s≤s (<to≤ {x} {y} lt)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
269
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
270 <∨≤ : ( x y : ℕ ) → (x < y ) ∨ (y ≤ x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
271 <∨≤ x y with <-cmp x y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
272 ... | tri< a ¬b ¬c = case1 a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
273 ... | tri≈ ¬a refl ¬c = case2 ≤-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
274 ... | tri> ¬a ¬b c = case2 (<to≤ c)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
275
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
276 refl-≤ : {x : ℕ } → x ≤ x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
277 refl-≤ {zero} = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
278 refl-≤ {suc x} = s≤s (refl-≤ {x})
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
279
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
280 refl-≤≡ : {x y : ℕ } → x ≡ y → x ≤ y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
281 refl-≤≡ refl = refl-≤
72
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
282
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
283 x<y→≤ : {x y : ℕ } → x < y → x ≤ suc y
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
284 x<y→≤ {zero} {.(suc _)} (s≤s z≤n) = z≤n
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
285 x<y→≤ {suc x} {suc y} (s≤s lt) = s≤s (x<y→≤ {x} {y} lt)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
286
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
287 ≤→= : {i j : ℕ} → i ≤ j → j ≤ i → i ≡ j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
288 ≤→= {0} {0} z≤n z≤n = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
289 ≤→= {suc i} {suc j} (s≤s i<j) (s≤s j<i) = cong suc ( ≤→= {i} {j} i<j j<i )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
290
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
291 px≤x : {x : ℕ } → pred x ≤ x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
292 px≤x {zero} = refl-≤
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
293 px≤x {suc x} = refl-≤s
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
294
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
295 px≤py : {x y : ℕ } → x ≤ y → pred x ≤ pred y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
296 px≤py {zero} {zero} lt = refl-≤
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
297 px≤py {zero} {suc y} lt = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
298 px≤py {suc x} {suc y} (s≤s lt) = lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
299
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
300 sx≤py→x≤y : {x y : ℕ } → suc x ≤ suc y → x ≤ y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
301 sx≤py→x≤y (s≤s lt) = lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
302
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
303 sx<py→x<y : {x y : ℕ } → suc x < suc y → x < y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
304 sx<py→x<y (s≤s lt) = lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
305
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
306 sx≤y→x≤y : {x y : ℕ } → suc x ≤ y → x ≤ y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
307 sx≤y→x≤y {zero} {suc y} (s≤s le) = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
308 sx≤y→x≤y {suc x} {suc y} (s≤s le) = s≤s (sx≤y→x≤y {x} {y} le)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
309
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
310 x<sy→x≤y : {x y : ℕ } → x < suc y → x ≤ y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
311 x<sy→x≤y {zero} {suc y} (s≤s le) = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
312 x<sy→x≤y {suc x} {suc y} (s≤s le) = s≤s (x<sy→x≤y {x} {y} le)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
313 x<sy→x≤y {zero} {zero} (s≤s z≤n) = ≤-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
315 x≤y→x<sy : {x y : ℕ } → x ≤ y → x < suc y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
316 x≤y→x<sy {.zero} {y} z≤n = ≤-trans a<sa (s≤s z≤n)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
317 x≤y→x<sy {.(suc _)} {.(suc _)} (s≤s le) = s≤s ( x≤y→x<sy le)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
318
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
319 sx≤y→x<y : {x y : ℕ } → suc x ≤ y → x < y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
320 sx≤y→x<y {zero} {suc y} (s≤s le) = s≤s z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
321 sx≤y→x<y {suc x} {suc y} (s≤s le) = s≤s ( sx≤y→x<y {x} {y} le )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
322
72
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
323 open import Data.Product
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
324
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
325 i-j=0→i=j : {i j : ℕ } → j ≤ i → i - j ≡ 0 → i ≡ j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
326 i-j=0→i=j {zero} {zero} _ refl = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
327 i-j=0→i=j {zero} {suc j} () refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
328 i-j=0→i=j {suc i} {zero} z≤n ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
329 i-j=0→i=j {suc i} {suc j} (s≤s lt) eq = cong suc (i-j=0→i=j {i} {j} lt eq)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
330
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
331 m*n=0⇒m=0∨n=0 : {i j : ℕ} → i * j ≡ 0 → (i ≡ 0) ∨ ( j ≡ 0 )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
332 m*n=0⇒m=0∨n=0 {zero} {j} refl = case1 refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
333 m*n=0⇒m=0∨n=0 {suc i} {zero} eq = case2 refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
334
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
335
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
336 minus+1 : {x y : ℕ } → y ≤ x → suc (minus x y) ≡ minus (suc x) y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
337 minus+1 {zero} {zero} y≤x = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
338 minus+1 {suc x} {zero} y≤x = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
339 minus+1 {suc x} {suc y} (s≤s y≤x) = minus+1 {x} {y} y≤x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
340
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
341 minus+yz : {x y z : ℕ } → z ≤ y → x + minus y z ≡ minus (x + y) z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
342 minus+yz {zero} {y} {z} _ = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
343 minus+yz {suc x} {y} {z} z≤y = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
344 suc x + minus y z ≡⟨ cong suc ( minus+yz z≤y ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
345 suc (minus (x + y) z) ≡⟨ minus+1 {x + y} {z} (≤-trans z≤y (subst (λ g → y ≤ g) (+-comm y x) x≤x+y) ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
346 minus (suc x + y) z ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
347
72
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
348 minus<=0 : {x y : ℕ } → x ≤ y → minus x y ≡ 0
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
349 minus<=0 {0} {zero} z≤n = refl
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
350 minus<=0 {0} {suc y} z≤n = refl
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
351 minus<=0 {suc x} {suc y} (s≤s le) = minus<=0 {x} {y} le
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
352
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
353 minus>0 : {x y : ℕ } → x < y → 0 < minus y x
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
354 minus>0 {zero} {suc _} (s≤s z≤n) = s≤s z≤n
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
355 minus>0 {suc x} {suc y} (s≤s lt) = minus>0 {x} {y} lt
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
356
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
357 minus>0→x<y : {x y : ℕ } → 0 < minus y x → x < y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
358 minus>0→x<y {x} {y} lt with <-cmp x y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
359 ... | tri< a ¬b ¬c = a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
360 ... | tri≈ ¬a refl ¬c = ⊥-elim ( nat-≡< (sym (minus<=0 {x} ≤-refl)) lt )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
361 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (sym (minus<=0 {y} (≤-trans refl-≤s c ))) lt )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
362
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
363 minus+y-y : {x y : ℕ } → (x + y) - y ≡ x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
364 minus+y-y {zero} {y} = minus<=0 {zero + y} {y} ≤-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
365 minus+y-y {suc x} {y} = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
366 (suc x + y) - y ≡⟨ sym (minus+1 {_} {y} x≤y+x) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
367 suc ((x + y) - y) ≡⟨ cong suc (minus+y-y {x} {y}) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
368 suc x ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
369
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
370 minus+yx-yz : {x y z : ℕ } → (y + x) - (y + z) ≡ x - z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
371 minus+yx-yz {x} {zero} {z} = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
372 minus+yx-yz {x} {suc y} {z} = minus+yx-yz {x} {y} {z}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
373
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
374 minus+xy-zy : {x y z : ℕ } → (x + y) - (z + y) ≡ x - z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
375 minus+xy-zy {x} {y} {z} = subst₂ (λ j k → j - k ≡ x - z ) (+-comm y x) (+-comm y z) (minus+yx-yz {x} {y} {z})
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
376
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
377 +cancel<l : (x z : ℕ ) {y : ℕ} → y + x < y + z → x < z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
378 +cancel<l x z {zero} lt = lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
379 +cancel<l x z {suc y} (s≤s lt) = +cancel<l x z {y} lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
380
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
381 +cancel<r : (x z : ℕ ) {y : ℕ} → x + y < z + y → x < z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
382 +cancel<r x z {y} lt = +cancel<l x z (subst₂ (λ j k → j < k ) (+-comm x _) (+-comm z _) lt )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
383
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
384 y-x<y : {x y : ℕ } → 0 < x → 0 < y → y - x < y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
385 y-x<y {x} {y} 0<x 0<y with <-cmp x (suc y)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
386 ... | tri< a ¬b ¬c = +cancel<r (y - x) _ ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
387 suc ((y - x) + x) ≡⟨ cong suc (minus+n {y} {x} a ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
388 suc y ≡⟨ +-comm 1 _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
389 y + suc 0 ≤⟨ +-mono-≤ ≤-refl 0<x ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
390 y + x ∎ ) where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
391 ... | tri≈ ¬a refl ¬c = subst ( λ k → k < y ) (sym (minus<=0 {y} {x} refl-≤s )) 0<y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
392 ... | tri> ¬a ¬b c = subst ( λ k → k < y ) (sym (minus<=0 {y} {x} (≤-trans (≤-trans refl-≤s refl-≤s) c))) 0<y -- suc (suc y) ≤ x → y ≤ x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
393
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
394 open import Relation.Binary.Definitions
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
395
72
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
396 distr-minus-* : {x y z : ℕ } → (minus x y) * z ≡ minus (x * z) (y * z)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
397 distr-minus-* {x} {zero} {z} = refl
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
398 distr-minus-* {x} {suc y} {z} with <-cmp x y
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
399 distr-minus-* {x} {suc y} {z} | tri< a ¬b ¬c = begin
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
400 minus x (suc y) * z
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
401 ≡⟨ cong (λ k → k * z ) (minus<=0 {x} {suc y} (x<y→≤ a)) ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
402 0 * z
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
403 ≡⟨ sym (minus<=0 {x * z} {z + y * z} le ) ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
404 minus (x * z) (z + y * z)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
405 ∎ where
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
406 open ≡-Reasoning
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
407 le : x * z ≤ z + y * z
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
408 le = ≤-trans lemma (subst (λ k → y * z ≤ k ) (+-comm _ z ) (x≤x+y {y * z} {z} ) ) where
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
409 lemma : x * z ≤ y * z
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
410 lemma = *≤ {x} {y} {z} (<to≤ a)
72
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
411 distr-minus-* {x} {suc y} {z} | tri≈ ¬a refl ¬c = begin
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
412 minus x (suc y) * z
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
413 ≡⟨ cong (λ k → k * z ) (minus<=0 {x} {suc y} refl-≤s ) ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
414 0 * z
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
415 ≡⟨ sym (minus<=0 {x * z} {z + y * z} (lt {x} {z} )) ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
416 minus (x * z) (z + y * z)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
417 ∎ where
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
418 open ≡-Reasoning
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
419 lt : {x z : ℕ } → x * z ≤ z + x * z
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
420 lt {zero} {zero} = z≤n
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
421 lt {suc x} {zero} = lt {x} {zero}
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
422 lt {x} {suc z} = ≤-trans lemma refl-≤s where
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
423 lemma : x * suc z ≤ z + x * suc z
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
424 lemma = subst (λ k → x * suc z ≤ k ) (+-comm _ z) (x≤x+y {x * suc z} {z})
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
425 distr-minus-* {x} {suc y} {z} | tri> ¬a ¬b c = +m= {_} {_} {suc y * z} ( begin
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
426 minus x (suc y) * z + suc y * z
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
427 ≡⟨ sym (proj₂ *-distrib-+ z (minus x (suc y) ) _) ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
428 ( minus x (suc y) + suc y ) * z
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
429 ≡⟨ cong (λ k → k * z) (minus+n {x} {suc y} (s≤s c)) ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
430 x * z
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
431 ≡⟨ sym (minus+n {x * z} {suc y * z} (s≤s (lt c))) ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
432 minus (x * z) (suc y * z) + suc y * z
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
433 ∎ ) where
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
434 open ≡-Reasoning
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
435 lt : {x y z : ℕ } → suc y ≤ x → z + y * z ≤ x * z
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
436 lt {x} {y} {z} le = *≤ le
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
437
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
438 distr-minus-*' : {z x y : ℕ } → z * (minus x y) ≡ minus (z * x) (z * y)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
439 distr-minus-*' {z} {x} {y} = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
440 z * (minus x y) ≡⟨ *-comm _ (x - y) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
441 (minus x y) * z ≡⟨ distr-minus-* {x} {y} {z} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
442 minus (x * z) (y * z) ≡⟨ cong₂ (λ j k → j - k ) (*-comm x z ) (*-comm y z) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
443 minus (z * x) (z * y) ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
444
72
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
445 minus- : {x y z : ℕ } → suc x > z + y → minus (minus x y) z ≡ minus x (y + z)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
446 minus- {x} {y} {z} gt = +m= {_} {_} {z} ( begin
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
447 minus (minus x y) z + z
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
448 ≡⟨ minus+n {_} {z} lemma ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
449 minus x y
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
450 ≡⟨ +m= {_} {_} {y} ( begin
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
451 minus x y + y
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
452 ≡⟨ minus+n {_} {y} lemma1 ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
453 x
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
454 ≡⟨ sym ( minus+n {_} {z + y} gt ) ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
455 minus x (z + y) + (z + y)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
456 ≡⟨ sym ( +-assoc (minus x (z + y)) _ _ ) ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
457 minus x (z + y) + z + y
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
458 ∎ ) ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
459 minus x (z + y) + z
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
460 ≡⟨ cong (λ k → minus x k + z ) (+-comm _ y ) ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
461 minus x (y + z) + z
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
462 ∎ ) where
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
463 open ≡-Reasoning
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
464 lemma1 : suc x > y
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
465 lemma1 = x+y<z→x<z (subst (λ k → k < suc x ) (+-comm z _ ) gt )
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
466 lemma : suc (minus x y) > z
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
467 lemma = <-minus {_} {_} {y} ( subst ( λ x → z + y < suc x ) (sym (minus+n {x} {y} lemma1 )) gt )
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
468
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
469 minus-* : {M k n : ℕ } → n < k → minus k (suc n) * M ≡ minus (minus k n * M ) M
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
470 minus-* {zero} {k} {n} lt = begin
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
471 minus k (suc n) * zero
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
472 ≡⟨ *-comm (minus k (suc n)) zero ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
473 zero * minus k (suc n)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
474 ≡⟨⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
475 0 * minus k n
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
476 ≡⟨ *-comm 0 (minus k n) ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
477 minus (minus k n * 0 ) 0
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
478 ∎ where
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
479 open ≡-Reasoning
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
480 minus-* {suc m} {k} {n} lt with <-cmp k 1
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
481 minus-* {suc m} {.0} {zero} lt | tri< (s≤s z≤n) ¬b ¬c = refl
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
482 minus-* {suc m} {.0} {suc n} lt | tri< (s≤s z≤n) ¬b ¬c = refl
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
483 minus-* {suc zero} {.1} {zero} lt | tri≈ ¬a refl ¬c = refl
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
484 minus-* {suc (suc m)} {.1} {zero} lt | tri≈ ¬a refl ¬c = minus-* {suc m} {1} {zero} lt
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
485 minus-* {suc m} {.1} {suc n} (s≤s ()) | tri≈ ¬a refl ¬c
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
486 minus-* {suc m} {k} {n} lt | tri> ¬a ¬b c = begin
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
487 minus k (suc n) * M
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
488 ≡⟨ distr-minus-* {k} {suc n} {M} ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
489 minus (k * M ) ((suc n) * M)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
490 ≡⟨⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
491 minus (k * M ) (M + n * M )
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
492 ≡⟨ cong (λ x → minus (k * M) x) (+-comm M _ ) ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
493 minus (k * M ) ((n * M) + M )
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
494 ≡⟨ sym ( minus- {k * M} {n * M} (lemma lt) ) ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
495 minus (minus (k * M ) (n * M)) M
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
496 ≡⟨ cong (λ x → minus x M ) ( sym ( distr-minus-* {k} {n} )) ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
497 minus (minus k n * M ) M
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
498 ∎ where
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
499 M = suc m
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
500 lemma : {n k m : ℕ } → n < k → suc (k * suc m) > suc m + n * suc m
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
501 lemma {zero} {suc k} {m} (s≤s lt) = s≤s (s≤s (subst (λ x → x ≤ m + k * suc m) (+-comm 0 _ ) x≤x+y ))
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
502 lemma {suc n} {suc k} {m} lt = begin
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
503 suc (suc m + suc n * suc m)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
504 ≡⟨⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
505 suc ( suc (suc n) * suc m)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
506 ≤⟨ ≤-plus-0 {_} {_} {1} (*≤ lt ) ⟩
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
507 suc (suc k * suc m)
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
508 ∎ where open ≤-Reasoning
09fa2ab75703 add utilties
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
509 open ≡-Reasoning
112
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 91
diff changeset
510
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
511 x=y+z→x-z=y : {x y z : ℕ } → x ≡ y + z → x - z ≡ y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
512 x=y+z→x-z=y {x} {zero} {.x} refl = minus<=0 {x} {x} refl-≤ -- x ≡ suc (y + z) → (x ≡ y + z → x - z ≡ y) → (x - z) ≡ suc y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
513 x=y+z→x-z=y {suc x} {suc y} {zero} eq = begin -- suc x ≡ suc (y + zero) → (suc x - zero) ≡ suc y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
514 suc x - zero ≡⟨ refl ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
515 suc x ≡⟨ eq ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
516 suc y + zero ≡⟨ +-comm _ zero ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
517 suc y ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
518 x=y+z→x-z=y {suc x} {suc y} {suc z} eq = x=y+z→x-z=y {x} {suc y} {z} ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
519 x ≡⟨ cong pred eq ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
520 pred (suc y + suc z) ≡⟨ +-comm _ (suc z) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
521 suc z + y ≡⟨ cong suc ( +-comm _ y ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
522 suc y + z ∎ ) where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
523
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
524 m*1=m : {m : ℕ } → m * 1 ≡ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
525 m*1=m {zero} = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
526 m*1=m {suc m} = cong suc m*1=m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
527
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
528 +-cancel-1 : (x y z : ℕ ) → x + y ≡ x + z → y ≡ z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
529 +-cancel-1 zero y z eq = eq
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
530 +-cancel-1 (suc x) y z eq = +-cancel-1 x y z (cong pred eq )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
531
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
532 +-cancel-0 : (x y z : ℕ ) → y + x ≡ z + x → y ≡ z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
533 +-cancel-0 x y z eq = +-cancel-1 x y z (trans (+-comm x y) (trans eq (sym (+-comm x z)) ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
534
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
535 *-cancel-left : {x y z : ℕ } → x > 0 → x * y ≡ x * z → y ≡ z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
536 *-cancel-left {suc x} {zero} {zero} lt eq = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
537 *-cancel-left {suc x} {zero} {suc z} lt eq = ⊥-elim ( nat-≡< eq (s≤s (begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
538 x * zero ≡⟨ *-comm x _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
539 zero ≤⟨ z≤n ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
540 z + x * suc z ∎ ))) where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
541 *-cancel-left {suc x} {suc y} {zero} lt eq = ⊥-elim ( nat-≡< (sym eq) (s≤s (begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
542 x * zero ≡⟨ *-comm x _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
543 zero ≤⟨ z≤n ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
544 _ ∎ ))) where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
545 *-cancel-left {suc x} {suc y} {suc z} lt eq with cong pred eq
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
546 ... | eq1 = cong suc (*-cancel-left {suc x} {y} {z} lt (+-cancel-0 x _ _ (begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
547 y + x * y + x ≡⟨ +-assoc y _ _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
548 y + (x * y + x) ≡⟨ cong (λ k → y + (k + x)) (*-comm x _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
549 y + (y * x + x) ≡⟨ cong (_+_ y) (+-comm _ x) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
550 y + (x + y * x ) ≡⟨ refl ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
551 y + suc y * x ≡⟨ cong (_+_ y) (*-comm (suc y) _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
552 y + x * suc y ≡⟨ eq1 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
553 z + x * suc z ≡⟨ refl ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
554 _ ≡⟨ sym ( cong (_+_ z) (*-comm (suc z) _) ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
555 _ ≡⟨ sym ( cong (_+_ z) (+-comm _ x)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
556 z + (z * x + x) ≡⟨ sym ( cong (λ k → z + (k + x)) (*-comm x _) ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
557 z + (x * z + x) ≡⟨ sym ( +-assoc z _ _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
558 z + x * z + x ∎ ))) where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
559
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
560 record Finduction {n m : Level} (P : Set n ) (Q : P → Set m ) (f : P → ℕ) : Set (n Level.⊔ m) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
561 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
562 fzero : {p : P} → f p ≡ zero → Q p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
563 pnext : (p : P ) → P
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
564 decline : {p : P} → 0 < f p → f (pnext p) < f p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
565 ind : {p : P} → Q (pnext p) → Q p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
566
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
567 y<sx→y≤x : {x y : ℕ} → y < suc x → y ≤ x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
568 y<sx→y≤x (s≤s lt) = lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
569
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
570 fi0 : (x : ℕ) → x ≤ zero → x ≡ zero
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
571 fi0 .0 z≤n = refl
112
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 91
diff changeset
572
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
573 f-induction : {n m : Level} {P : Set n } → {Q : P → Set m }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
574 → (f : P → ℕ)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
575 → Finduction P Q f
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
576 → (p : P ) → Q p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
577 f-induction {n} {m} {P} {Q} f I p with <-cmp 0 (f p)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
578 ... | tri> ¬a ¬b ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
579 ... | tri≈ ¬a b ¬c = Finduction.fzero I (sym b)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
580 ... | tri< lt _ _ = f-induction0 p (f p) (<to≤ (Finduction.decline I lt)) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
581 f-induction0 : (p : P) → (x : ℕ) → (f (Finduction.pnext I p)) ≤ x → Q p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
582 f-induction0 p zero le = Finduction.ind I (Finduction.fzero I (fi0 _ le))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
583 f-induction0 p (suc x) le with <-cmp (f (Finduction.pnext I p)) (suc x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
584 ... | tri< (s≤s a) ¬b ¬c = f-induction0 p x a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
585 ... | tri≈ ¬a b ¬c = Finduction.ind I (f-induction0 (Finduction.pnext I p) x (y<sx→y≤x f1)) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
586 f1 : f (Finduction.pnext I (Finduction.pnext I p)) < suc x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
587 f1 = subst (λ k → f (Finduction.pnext I (Finduction.pnext I p)) < k ) b ( Finduction.decline I {Finduction.pnext I p}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
588 (subst (λ k → 0 < k ) (sym b) (s≤s z≤n ) ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
589 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> le c )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
590
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
591
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
592 record Ninduction {n m : Level} (P : Set n ) (Q : P → Set m ) (f : P → ℕ) : Set (n Level.⊔ m) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
593 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
594 pnext : (p : P ) → P
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
595 fzero : {p : P} → f (pnext p) ≡ zero → Q p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
596 decline : {p : P} → 0 < f p → f (pnext p) < f p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
597 ind : {p : P} → Q (pnext p) → Q p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
598
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
599 s≤s→≤ : { i j : ℕ} → suc i ≤ suc j → i ≤ j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
600 s≤s→≤ (s≤s lt) = lt
112
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 91
diff changeset
601
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
602 n-induction : {n m : Level} {P : Set n } → {Q : P → Set m }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
603 → (f : P → ℕ)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
604 → Ninduction P Q f
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
605 → (p : P ) → Q p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
606 n-induction {n} {m} {P} {Q} f I p = f-induction0 p (f (Ninduction.pnext I p)) ≤-refl where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
607 f-induction0 : (p : P) → (x : ℕ) → (f (Ninduction.pnext I p)) ≤ x → Q p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
608 f-induction0 p zero lt = Ninduction.fzero I {p} (fi0 _ lt)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
609 f-induction0 p (suc x) le with <-cmp (f (Ninduction.pnext I p)) (suc x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
610 ... | tri< (s≤s a) ¬b ¬c = f-induction0 p x a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
611 ... | tri≈ ¬a b ¬c = Ninduction.ind I (f-induction0 (Ninduction.pnext I p) x (s≤s→≤ nle) ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
612 f>0 : 0 < f (Ninduction.pnext I p)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
613 f>0 = subst (λ k → 0 < k ) (sym b) ( s≤s z≤n )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
614 nle : suc (f (Ninduction.pnext I (Ninduction.pnext I p))) ≤ suc x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
615 nle = subst (λ k → suc (f (Ninduction.pnext I (Ninduction.pnext I p))) ≤ k) b (Ninduction.decline I {Ninduction.pnext I p} f>0 )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
616 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> le c )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
617
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
618
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
619 record Factor (n m : ℕ ) : Set where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
620 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
621 factor : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
622 remain : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
623 is-factor : factor * n + remain ≡ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
624
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
625 record Dividable (n m : ℕ ) : Set where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
626 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
627 factor : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
628 is-factor : factor * n + 0 ≡ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
629
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
630 open Factor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
631
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
632 DtoF : {n m : ℕ} → Dividable n m → Factor n m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
633 DtoF {n} {m} record { factor = f ; is-factor = fa } = record { factor = f ; remain = 0 ; is-factor = fa }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
634
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
635 FtoD : {n m : ℕ} → (fc : Factor n m) → remain fc ≡ 0 → Dividable n m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
636 FtoD {n} {m} record { factor = f ; remain = r ; is-factor = fa } refl = record { factor = f ; is-factor = fa }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
637
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
638 --divdable^2 : ( n k : ℕ ) → Dividable k ( n * n ) → Dividable k n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
639 --divdable^2 n k dn2 = {!!}
112
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 91
diff changeset
640
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
641 decf : { n k : ℕ } → ( x : Factor k (suc n) ) → Factor k n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
642 decf {n} {k} record { factor = f ; remain = r ; is-factor = fa } =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
643 decf1 {n} {k} f r fa where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
644 decf1 : { n k : ℕ } → (f r : ℕ) → (f * k + r ≡ suc n) → Factor k n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
645 decf1 {n} {k} f (suc r) fa = -- this case must be the first
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
646 record { factor = f ; remain = r ; is-factor = ( begin -- fa : f * k + suc r ≡ suc n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
647 f * k + r ≡⟨ cong pred ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
648 suc ( f * k + r ) ≡⟨ +-comm _ r ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
649 r + suc (f * k) ≡⟨ sym (+-assoc r 1 _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
650 (r + 1) + f * k ≡⟨ cong (λ t → t + f * k ) (+-comm r 1) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
651 (suc r ) + f * k ≡⟨ +-comm (suc r) _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
652 f * k + suc r ≡⟨ fa ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
653 suc n ∎ ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
654 n ∎ ) } where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
655 decf1 {n} {zero} (suc f) zero fa = ⊥-elim ( nat-≡< fa (
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
656 begin suc (suc f * zero + zero) ≡⟨ cong suc (+-comm _ zero) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
657 suc (f * 0) ≡⟨ cong suc (*-comm f zero) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
658 suc zero ≤⟨ s≤s z≤n ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
659 suc n ∎ )) where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
660 decf1 {n} {suc k} (suc f) zero fa =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
661 record { factor = f ; remain = k ; is-factor = ( begin -- fa : suc (k + f * suc k + zero) ≡ suc n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
662 f * suc k + k ≡⟨ +-comm _ k ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
663 k + f * suc k ≡⟨ +-comm zero _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
664 (k + f * suc k) + zero ≡⟨ cong pred fa ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
665 n ∎ ) } where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
666
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
667 div0 : {k : ℕ} → Dividable k 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
668 div0 {k} = record { factor = 0; is-factor = refl }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
669
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
670 div= : {k : ℕ} → Dividable k k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
671 div= {k} = record { factor = 1; is-factor = ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
672 k + 0 * k + 0 ≡⟨ trans ( +-comm _ 0) ( +-comm _ 0) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
673 k ∎ ) } where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
674
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
675 div1 : { k : ℕ } → k > 1 → ¬ Dividable k 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
676 div1 {k} k>1 record { factor = (suc f) ; is-factor = fa } = ⊥-elim ( nat-≡< (sym fa) ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
677 2 ≤⟨ k>1 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
678 k ≡⟨ +-comm 0 _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
679 k + 0 ≡⟨ refl ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
680 1 * k ≤⟨ *-mono-≤ {1} {suc f} (s≤s z≤n ) ≤-refl ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
681 suc f * k ≡⟨ +-comm 0 _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
682 suc f * k + 0 ∎ )) where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
683
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
684 div+div : { i j k : ℕ } → Dividable k i → Dividable k j → Dividable k (i + j) ∧ Dividable k (j + i)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
685 div+div {i} {j} {k} di dj = ⟪ div+div1 , subst (λ g → Dividable k g) (+-comm i j) div+div1 ⟫ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
686 fki = Dividable.factor di
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
687 fkj = Dividable.factor dj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
688 div+div1 : Dividable k (i + j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
689 div+div1 = record { factor = fki + fkj ; is-factor = ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
690 (fki + fkj) * k + 0 ≡⟨ +-comm _ 0 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
691 (fki + fkj) * k ≡⟨ *-distribʳ-+ k fki _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
692 fki * k + fkj * k ≡⟨ cong₂ ( λ i j → i + j ) (+-comm 0 (fki * k)) (+-comm 0 (fkj * k)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
693 (fki * k + 0) + (fkj * k + 0) ≡⟨ cong₂ ( λ i j → i + j ) (Dividable.is-factor di) (Dividable.is-factor dj) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
694 i + j ∎ ) } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
695 open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
696
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
697 div-div : { i j k : ℕ } → k > 1 → Dividable k i → Dividable k j → Dividable k (i - j) ∧ Dividable k (j - i)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
698 div-div {i} {j} {k} k>1 di dj = ⟪ div-div1 di dj , div-div1 dj di ⟫ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
699 div-div1 : {i j : ℕ } → Dividable k i → Dividable k j → Dividable k (i - j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
700 div-div1 {i} {j} di dj = record { factor = fki - fkj ; is-factor = ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
701 (fki - fkj) * k + 0 ≡⟨ +-comm _ 0 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
702 (fki - fkj) * k ≡⟨ distr-minus-* {fki} {fkj} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
703 (fki * k) - (fkj * k) ≡⟨ cong₂ ( λ i j → i - j ) (+-comm 0 (fki * k)) (+-comm 0 (fkj * k)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
704 (fki * k + 0) - (fkj * k + 0) ≡⟨ cong₂ ( λ i j → i - j ) (Dividable.is-factor di) (Dividable.is-factor dj) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
705 i - j ∎ ) } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
706 open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
707 fki = Dividable.factor di
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
708 fkj = Dividable.factor dj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
709
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
710 open _∧_
112
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 91
diff changeset
711
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
712 div+1 : { i k : ℕ } → k > 1 → Dividable k i → ¬ Dividable k (suc i)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
713 div+1 {i} {k} k>1 d d1 = div1 k>1 div+11 where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
714 div+11 : Dividable k 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
715 div+11 = subst (λ g → Dividable k g) (minus+y-y {1} {i} ) ( proj2 (div-div k>1 d d1 ) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
716
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
717 div<k : { m k : ℕ } → k > 1 → m > 0 → m < k → ¬ Dividable k m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
718 div<k {m} {k} k>1 m>0 m<k d = ⊥-elim ( nat-≤> (div<k1 (Dividable.factor d) (Dividable.is-factor d)) m<k ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
719 div<k1 : (f : ℕ ) → f * k + 0 ≡ m → k ≤ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
720 div<k1 zero eq = ⊥-elim (nat-≡< eq m>0 )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
721 div<k1 (suc f) eq = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
722 k ≤⟨ x≤x+y ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
723 k + (f * k + 0) ≡⟨ sym (+-assoc k _ _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
724 k + f * k + 0 ≡⟨ eq ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
725 m ∎ where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
726
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
727 0<factor : { m k : ℕ } → k > 0 → m > 0 → (d : Dividable k m ) → Dividable.factor d > 0
318
fff18d4a063b use stdlib-2.0 and safe-mode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 314
diff changeset
728 0<factor {m} {k} k>0 m>0 d with Dividable.factor d in eq1
fff18d4a063b use stdlib-2.0 and safe-mode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 314
diff changeset
729 ... | zero = ⊥-elim ( nat-≡< ff1 m>0 ) where
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
730 ff1 : 0 ≡ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
731 ff1 = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
732 0 ≡⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
733 0 * k + 0 ≡⟨ cong (λ j → j * k + 0) (sym eq1) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
734 Dividable.factor d * k + 0 ≡⟨ Dividable.is-factor d ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
735 m ∎ where open ≡-Reasoning
318
fff18d4a063b use stdlib-2.0 and safe-mode
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 314
diff changeset
736 ... | suc t = s≤s z≤n
314
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
737
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
738 div→k≤m : { m k : ℕ } → k > 1 → m > 0 → Dividable k m → m ≥ k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
739 div→k≤m {m} {k} k>1 m>0 d with <-cmp m k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
740 ... | tri< a ¬b ¬c = ⊥-elim ( div<k k>1 m>0 a d )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
741 ... | tri≈ ¬a refl ¬c = ≤-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
742 ... | tri> ¬a ¬b c = <to≤ c
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
743
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
744 div1*k+0=k : {k : ℕ } → 1 * k + 0 ≡ k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
745 div1*k+0=k {k} = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
746 1 * k + 0 ≡⟨ cong (λ g → g + 0) (+-comm _ 0) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
747 k + 0 ≡⟨ +-comm _ 0 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
748 k ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
749
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
750 decD : {k m : ℕ} → k > 1 → Dec (Dividable k m )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
751 decD {k} {m} k>1 = n-induction {_} {_} {ℕ} {λ m → Dec (Dividable k m ) } F I m where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
752 F : ℕ → ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
753 F m = m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
754 F0 : ( m : ℕ ) → F (m - k) ≡ 0 → Dec (Dividable k m )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
755 F0 0 eq = yes record { factor = 0 ; is-factor = refl }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
756 F0 (suc m) eq with <-cmp k (suc m)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
757 ... | tri< a ¬b ¬c = yes record { factor = 1 ; is-factor =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
758 subst (λ g → 1 * k + 0 ≡ g ) (sym (i-j=0→i=j (<to≤ a) eq )) div1*k+0=k } -- (suc m - k) ≡ 0 → k ≡ suc m, k ≤ suc m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
759 ... | tri≈ ¬a refl ¬c = yes record { factor = 1 ; is-factor = div1*k+0=k }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
760 ... | tri> ¬a ¬b c = no ( λ d → ⊥-elim (div<k k>1 (s≤s z≤n ) c d) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
761 decl : {m : ℕ } → 0 < m → m - k < m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
762 decl {m} 0<m = y-x<y (<-trans a<sa k>1 ) 0<m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
763 ind : (p : ℕ ) → Dec (Dividable k (p - k) ) → Dec (Dividable k p )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
764 ind p (yes y) with <-cmp p k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
765 ... | tri≈ ¬a refl ¬c = yes (subst (λ g → Dividable k g) (minus+n ≤-refl ) (proj1 ( div+div y div= )))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
766 ... | tri> ¬a ¬b k<p = yes (subst (λ g → Dividable k g) (minus+n (<-trans k<p a<sa)) (proj1 ( div+div y div= )))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
767 ... | tri< a ¬b ¬c with <-cmp p 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
768 ... | tri≈ ¬a refl ¬c₁ = yes div0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
769 ... | tri> ¬a ¬b₁ c = no (λ d → not-div p (Dividable.factor d) a c (Dividable.is-factor d) ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
770 not-div : (p f : ℕ) → p < k → 0 < p → f * k + 0 ≡ p → ⊥
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
771 not-div (suc p) (suc f) p<k 0<p eq = nat-≡< (sym eq) ( begin -- ≤-trans p<k {!!}) -- suc p ≤ k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
772 suc (suc p) ≤⟨ p<k ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
773 k ≤⟨ x≤x+y ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
774 k + (f * k + 0) ≡⟨ sym (+-assoc k _ _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
775 suc f * k + 0 ∎ ) where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
776 ind p (no n) = no (λ d → n (proj1 (div-div k>1 d div=)) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
777 I : Ninduction ℕ _ F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
778 I = record {
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
779 pnext = λ p → p - k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
780 ; fzero = λ {m} eq → F0 m eq
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
781 ; decline = λ {m} lt → decl lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
782 ; ind = λ {p} prev → ind p prev
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
783 }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
784
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 255
diff changeset
785