Mercurial > hg > Members > kono > Proof > galois
comparison sym3.agda @ 70:32004c9a70b1
sym2 done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 24 Aug 2020 22:37:21 +0900 |
parents | sym5.agda@fb1ccedf5853 |
children | 405c1f727ffe |
comparison
equal
deleted
inserted
replaced
69:fb1ccedf5853 | 70:32004c9a70b1 |
---|---|
1 open import Level hiding ( suc ; zero ) | |
2 open import Algebra | |
3 module sym3 where | |
4 | |
5 open import Symmetric | |
6 open import Data.Unit | |
7 open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) | |
8 open import Function | |
9 open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero) | |
10 open import Relation.Nullary | |
11 open import Data.Empty | |
12 open import Data.Product | |
13 | |
14 open import Gutil | |
15 open import Putil | |
16 open import Solvable using (solvable) | |
17 open import Relation.Binary.PropositionalEquality hiding ( [_] ) | |
18 | |
19 open import Data.Fin | |
20 open import Data.Fin.Permutation | |
21 | |
22 sym3solvable : solvable (Symmetric 3) | |
23 solvable.dervied-length sym3solvable = 2 | |
24 solvable.end sym3solvable x d = solved1 x d where | |
25 | |
26 open import Data.List using ( List ; [] ; _∷_ ) | |
27 | |
28 open Solvable (Symmetric 3) | |
29 -- open Group (Symmetric 2) using (_⁻¹) | |
30 | |
31 p0 : FL→perm ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) =p= pid | |
32 p0 = record { peq = p00 } where | |
33 p00 : (q : Fin 3) → (FL→perm ((# 0) :: ((# 0) :: ((# 0) :: f0))) ⟨$⟩ʳ q) ≡ (pid ⟨$⟩ʳ q) | |
34 p00 zero = refl | |
35 p00 (suc zero) = refl | |
36 p00 (suc (suc zero)) = refl | |
37 | |
38 open _=p=_ | |
39 | |
40 solved1 : (x : Permutation 3 3) → Commutator (λ x₁ → Commutator (λ x₂ → Lift (Level.suc Level.zero) ⊤) x₁) x → x =p= pid | |
41 solved1 = {!!} |