Mercurial > hg > Members > kono > Proof > galois
diff Symmetric.agda @ 38:bc289ffd0896
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 20 Aug 2020 09:07:54 +0900 |
parents | 32db08b3c1a3 |
children | 7b890eb577a6 |
line wrap: on
line diff
--- a/Symmetric.agda Thu Aug 20 00:26:38 2020 +0900 +++ b/Symmetric.agda Thu Aug 20 09:07:54 2020 +0900 @@ -78,7 +78,7 @@ open import Relation.Binary.Core open import fin --- An inductive definition of permutation +-- An inductive construction of permutation pprep : {n : ℕ } → Permutation n n → Permutation (suc n) (suc n) pprep {n} perm = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where @@ -167,3 +167,24 @@ plist1 (suc i) (s≤s lt) = toℕ ( perm ⟨$⟩ˡ (fromℕ≤ (s≤s lt))) ∷ plist1 i (<-trans lt a<sa) test = eperm {3} ( s≤s ( s≤s z≤n )) ( eperm (s≤s z≤n) pid ) + +NL : (n : ℕ ) → Set +NL 0 = ℕ +NL (suc n) = List ( NL n ) + +pls : (n : ℕ ) → List (List ℕ ) +pls n = pls1 n n lem0 where + lem0 : {n : ℕ } → n ≤ n + lem0 {zero} = z≤n + lem0 {suc n} = s≤s lem0 + lem1 : {i n : ℕ } → i ≤ n → i < suc n + lem1 z≤n = s≤s z≤n + lem1 (s≤s lt) = s≤s (lem1 lt) + lem2 : {i n : ℕ } → i ≤ n → i ≤ suc n + lem2 i≤n = ≤-trans i≤n ( refl-≤s ) + pls2 : ( i n : ℕ ) → (i<n : i ≤ n ) → Permutation (suc n) (suc n) + pls2 0 n i≤<n = pid + pls2 (suc i) (suc n) (s≤s i≤n) = eperm {suc n} {i} (lem1 i≤n) ( pls2 i n i≤n) + pls1 : ( i n : ℕ ) → i ≤ n → List (List ℕ) + pls1 0 n _ = [] + pls1 (suc i) n (s≤s i≤n) = plist ( pls2 i n (lem2 i≤n)) ∷ pls1 i n (lem2 i≤n)