diff src/Symmetric.agda @ 316:d712d2a1f8bb stack-8.10.7

fix for new agda stdlib
author kono
date Sat, 16 Sep 2023 14:59:33 +0900
parents 6d1619d9f880
children
line wrap: on
line diff
--- a/src/Symmetric.agda	Sat Sep 16 13:14:17 2023 +0900
+++ b/src/Symmetric.agda	Sat Sep 16 14:59:33 2023 +0900
@@ -22,11 +22,11 @@
 
 -- Data.Fin.Permutation.id
 pid : {p : ℕ } → Permutation p p
-pid = permutation fid fid record { left-inverse-of = λ x → refl ; right-inverse-of = λ x → refl }
+pid = permutation fid fid (λ x → refl) (λ x → refl) -- record { left-inverse-of = λ x → refl ; right-inverse-of = λ x → refl } 
 
 -- Data.Fin.Permutation.flip
 pinv : {p : ℕ } → Permutation p p → Permutation p p
-pinv {p} P = permutation (_⟨$⟩ˡ_ P) (_⟨$⟩ʳ_ P ) record { left-inverse-of = λ x → inverseʳ P ; right-inverse-of = λ x → inverseˡ P }
+pinv {p} P = permutation (_⟨$⟩ˡ_ P) (_⟨$⟩ʳ_ P ) (λ x → inverseˡ P ) ( λ x → inverseʳ P) -- record { left-inverse-of = λ x → inverseʳ P ; right-inverse-of = λ x → inverseˡ P }
 
 record _=p=_ {p : ℕ } ( x y : Permutation p p )  : Set where
     field
@@ -57,7 +57,13 @@
 presp : { p : ℕ } {x y u v : Permutation p p } → x =p= y → u =p= v → (x ∘ₚ u) =p= (y ∘ₚ v)
 presp {p} {x} {y} {u} {v} x=y u=v = record { peq = λ q → lemma4 q } where
    lemma4 : (q : Fin p) → ((x ∘ₚ u) ⟨$⟩ʳ q) ≡ ((y ∘ₚ v) ⟨$⟩ʳ q)
-   lemma4 q = trans (cong (λ k → Inverse.to u Π.⟨$⟩ k) (peq x=y q) ) (peq u=v _ )
+   lemma4 q = begin
+          ((x ∘ₚ u) ⟨$⟩ʳ q) ≡⟨ peq u=v _ ⟩
+          ((x ∘ₚ v) ⟨$⟩ʳ q) ≡⟨ cong (λ k → Inverse.to v k  ) (peq x=y _) ⟩
+          ((y ∘ₚ v) ⟨$⟩ʳ q) ∎  
+     where 
+       open ≡-Reasoning
+   -- lemma4 q = trans (cong (λ k → Inverse.to u Π.⟨$⟩ k) (peq x=y q) ) (peq u=v _ )
 passoc : { p : ℕ } (x y z : Permutation p p) → ((x ∘ₚ y) ∘ₚ z) =p=  (x ∘ₚ (y ∘ₚ z))
 passoc x y z = record { peq = λ q → refl }
 p-inv : { p : ℕ } {i j : Permutation p p} →  i =p= j → (q : Fin p) → pinv i ⟨$⟩ʳ q ≡ pinv j ⟨$⟩ʳ q