Mercurial > hg > Members > kono > Proof > galois
changeset 316:d712d2a1f8bb stack-8.10.7
fix for new agda stdlib
author | kono |
---|---|
date | Sat, 16 Sep 2023 14:59:33 +0900 |
parents | a067959c1799 |
children | 09cdda30cc49 |
files | src/Putil.agda src/Symmetric.agda src/sym5.agda |
diffstat | 3 files changed, 24 insertions(+), 21 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Putil.agda Sat Sep 16 13:14:17 2023 +0900 +++ b/src/Putil.agda Sat Sep 16 14:59:33 2023 +0900 @@ -29,7 +29,7 @@ -- An inductive construction of permutation pprep : {n : ℕ } → Permutation n n → Permutation (suc n) (suc n) -pprep {n} perm = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where +pprep {n} perm = permutation p→ p← piso← piso→ where p→ : Fin (suc n) → Fin (suc n) p→ zero = zero p→ (suc x) = suc ( perm ⟨$⟩ʳ x) @@ -47,7 +47,7 @@ piso→ (suc x) = cong (λ k → suc k ) (inverseˡ perm) pswap : {n : ℕ } → Permutation n n → Permutation (suc (suc n)) (suc (suc n )) -pswap {n} perm = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where +pswap {n} perm = permutation p→ p← piso← piso→ where p→ : Fin (suc (suc n)) → Fin (suc (suc n)) p→ zero = suc zero p→ (suc zero) = zero @@ -127,7 +127,7 @@ pins : {n m : ℕ} → m ≤ n → Permutation (suc n) (suc n) pins {_} {zero} _ = pid -pins {suc n} {suc m} (s≤s m≤n) = permutation p← p→ record { left-inverse-of = piso← ; right-inverse-of = piso→ } where +pins {suc n} {suc m} (s≤s m≤n) = permutation p← p→ piso→ piso← where next : Fin (suc (suc n)) → Fin (suc (suc n)) next zero = suc zero @@ -467,7 +467,7 @@ -- 0 ∷ 1 ∷ 2 ∷ 3 ∷ [] → 0 ∷ 1 ∷ 2 ∷ [] shrink : {n : ℕ} → (perm : Permutation (suc n) (suc n) ) → perm ⟨$⟩ˡ (# 0) ≡ # 0 → Permutation n n -shrink {n} perm p0=0 = permutation p→ p← record { left-inverse-of = piso→ ; right-inverse-of = piso← } where +shrink {n} perm p0=0 = permutation p→ p← piso← piso→ where p→ : Fin n → Fin n p→ x with perm ⟨$⟩ʳ (suc x) | inspect (_⟨$⟩ʳ_ perm ) (suc x) @@ -496,9 +496,9 @@ plem1 = begin suc t1 ≡⟨ sym e1 ⟩ - Inverse.to perm Π.⟨$⟩ suc t - ≡⟨ cong (λ k → Inverse.to perm Π.⟨$⟩ k ) (sym e0) ⟩ - Inverse.to perm Π.⟨$⟩ ( Inverse.from perm Π.⟨$⟩ suc x ) + Inverse.to perm _ + ≡⟨ cong (λ k → Inverse.to perm k ) (sym e0) ⟩ + Inverse.to perm ( Inverse.from perm _ ) ≡⟨ inverseʳ perm ⟩ suc x ∎ @@ -517,14 +517,11 @@ plem2 refl = refl plem3 : suc t1 ≡ suc x plem3 = begin - suc t1 - ≡⟨ sym e1 ⟩ - Inverse.from perm Π.⟨$⟩ suc t - ≡⟨ cong (λ k → Inverse.from perm Π.⟨$⟩ k ) (sym e0 ) ⟩ - Inverse.from perm Π.⟨$⟩ ( Inverse.to perm Π.⟨$⟩ suc x ) - ≡⟨ inverseˡ perm ⟩ - suc x - ∎ + suc t1 ≡⟨ sym e1 ⟩ + Inverse.from perm (suc t) ≡⟨ cong (λ k → Inverse.from perm k ) (sym e0 ) ⟩ + Inverse.from perm ((Inverse.to perm (suc x)) ) ≡⟨ cong (λ k → Inverse.from perm (Inverse.to perm (suc x)) ) (sym e0 ) ⟩ + Inverse.from perm ( Inverse.to perm _ ) ≡⟨ inverseˡ perm ⟩ + suc x ∎ shrink-iso : { n : ℕ } → {perm : Permutation n n} → shrink (pprep perm) refl =p= perm shrink-iso {n} {perm} = record { peq = λ q → refl }
--- a/src/Symmetric.agda Sat Sep 16 13:14:17 2023 +0900 +++ b/src/Symmetric.agda Sat Sep 16 14:59:33 2023 +0900 @@ -22,11 +22,11 @@ -- Data.Fin.Permutation.id pid : {p : ℕ } → Permutation p p -pid = permutation fid fid record { left-inverse-of = λ x → refl ; right-inverse-of = λ x → refl } +pid = permutation fid fid (λ x → refl) (λ x → refl) -- record { left-inverse-of = λ x → refl ; right-inverse-of = λ x → refl } -- Data.Fin.Permutation.flip pinv : {p : ℕ } → Permutation p p → Permutation p p -pinv {p} P = permutation (_⟨$⟩ˡ_ P) (_⟨$⟩ʳ_ P ) record { left-inverse-of = λ x → inverseʳ P ; right-inverse-of = λ x → inverseˡ P } +pinv {p} P = permutation (_⟨$⟩ˡ_ P) (_⟨$⟩ʳ_ P ) (λ x → inverseˡ P ) ( λ x → inverseʳ P) -- record { left-inverse-of = λ x → inverseʳ P ; right-inverse-of = λ x → inverseˡ P } record _=p=_ {p : ℕ } ( x y : Permutation p p ) : Set where field @@ -57,7 +57,13 @@ presp : { p : ℕ } {x y u v : Permutation p p } → x =p= y → u =p= v → (x ∘ₚ u) =p= (y ∘ₚ v) presp {p} {x} {y} {u} {v} x=y u=v = record { peq = λ q → lemma4 q } where lemma4 : (q : Fin p) → ((x ∘ₚ u) ⟨$⟩ʳ q) ≡ ((y ∘ₚ v) ⟨$⟩ʳ q) - lemma4 q = trans (cong (λ k → Inverse.to u Π.⟨$⟩ k) (peq x=y q) ) (peq u=v _ ) + lemma4 q = begin + ((x ∘ₚ u) ⟨$⟩ʳ q) ≡⟨ peq u=v _ ⟩ + ((x ∘ₚ v) ⟨$⟩ʳ q) ≡⟨ cong (λ k → Inverse.to v k ) (peq x=y _) ⟩ + ((y ∘ₚ v) ⟨$⟩ʳ q) ∎ + where + open ≡-Reasoning + -- lemma4 q = trans (cong (λ k → Inverse.to u Π.⟨$⟩ k) (peq x=y q) ) (peq u=v _ ) passoc : { p : ℕ } (x y z : Permutation p p) → ((x ∘ₚ y) ∘ₚ z) =p= (x ∘ₚ (y ∘ₚ z)) passoc x y z = record { peq = λ q → refl } p-inv : { p : ℕ } {i j : Permutation p p} → i =p= j → (q : Fin p) → pinv i ⟨$⟩ʳ q ≡ pinv j ⟨$⟩ʳ q
--- a/src/sym5.agda Sat Sep 16 13:14:17 2023 +0900 +++ b/src/sym5.agda Sat Sep 16 14:59:33 2023 +0900 @@ -14,7 +14,7 @@ open import Gutil open import Putil -open import Solvable using (solvable) +open import Solvable (Symmetric 5) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.Fin hiding (_<_ ; _≤_ ; lift ) @@ -30,8 +30,9 @@ open _∧_ -¬sym5solvable : ¬ ( solvable (Symmetric 5) ) +¬sym5solvable : ¬ solvable ¬sym5solvable sol = counter-example (end5 (abc 0<3 0<4 ) (dervie-any-3rot0 (dervied-length sol) 0<3 0<4 ) ) where + -- -- dba 1320 d → b → a → d -- (dba)⁻¹ 3021 a → b → d → a @@ -43,7 +44,6 @@ open ≡-Reasoning open solvable - open Solvable ( Symmetric 5) end5 : (x : Permutation 5 5) → deriving (dervied-length sol) x → x =p= pid end5 x der = end sol x der