Mercurial > hg > Members > kono > Proof > galois
changeset 118:019b98d398ee
sym5 done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 03 Sep 2020 14:06:18 +0900 |
parents | 540d109b599c |
children | 2dae51792e1a |
files | sym5.agda |
diffstat | 1 files changed, 2 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/sym5.agda Thu Sep 03 13:40:21 2020 +0900 +++ b/sym5.agda Thu Sep 03 14:06:18 2020 +0900 @@ -74,8 +74,6 @@ abc i<3 j<4 = ins2 3rot i<3 j<4 dba : {i j : ℕ } → (i ≤ 3 ) → ( j ≤ 4 ) → Permutation 5 5 dba i<3 j<4 = ins2 (3rot ∘ₚ 3rot) i<3 j<4 - aec : {i j : ℕ } → (i ≤ 3 ) → ( j ≤ 4 ) → Permutation 5 5 - aec i<3 j<4 = ins2 (pinv 3rot) i<3 j<4 record Triple {i j : ℕ } (i<3 : i ≤ 3) (j<4 : j ≤ 4) (rot : Permutation 3 3) : Set where field @@ -204,15 +202,7 @@ ceq' : ins2 3rot i<3 j<4 =p= [ ins2 (3rot ∘ₚ 3rot) (fin≤n {3} (dba0<3 tc)) (fin≤n {4} (dba1<4 tc)) , ins2 (3rot ∘ₚ 3rot) (fin≤n {3} (aec0<3 tc )) (fin≤n {4} (aec1<4 tc)) ] ceq' = abc= tc ceq : abc i<3 j<4 =p= [ dba0 , aec0 ] - ceq = record { peq = λ q → begin - abc i<3 j<4 ⟨$⟩ʳ q - ≡⟨ peq (abc= tc) q ⟩ - [ ins2 (3rot ∘ₚ 3rot) (fin≤n (dba0<3 tc)) (fin≤n (dba1<4 tc)) , ins2 (3rot ∘ₚ 3rot) (fin≤n (aec0<3 tc)) (fin≤n (aec1<4 tc)) ] ⟨$⟩ʳ q - ≡⟨ {!!} ⟩ - {!!} - ≡⟨ {!!} ⟩ - [ dba0 , aec0 ] ⟨$⟩ʳ q - ∎ } + ceq = record { peq = peq (abc= tc) } df = dervie-any-3rot1 i (fin≤n {3} (dba0<3 tc)) (fin≤n {4} (dba1<4 tc)) dg = dervie-any-3rot1 i (fin≤n {3} (aec0<3 tc)) (fin≤n {4} (aec1<4 tc)) @@ -222,7 +212,7 @@ aec0 = ins2 ((3rot ∘ₚ 3rot) ∘ₚ (3rot ∘ₚ 3rot )) (fin≤n {3} (dba0<3 tdba)) (fin≤n {4} (dba1<4 tdba)) abc0 = ins2 ((3rot ∘ₚ 3rot) ∘ₚ (3rot ∘ₚ 3rot )) (fin≤n {3} (aec0<3 tdba)) (fin≤n {4} (aec1<4 tdba)) ceq : dba i<3 j<4 =p= [ aec0 , abc0 ] - ceq = {!!} -- abc= tdba + ceq = record { peq = peq (abc= tdba) } df : deriving n (ins2 ((3rot ∘ₚ 3rot) ∘ₚ (3rot ∘ₚ 3rot )) (fin≤n {3} (dba0<3 tdba)) (fin≤n {4} (dba1<4 tdba))) df = deriving-subst (psym (ins2cong {toℕ (dba0<3 (dba-triple i<3 j<4))} {toℕ (dba1<4 (dba-triple i<3 j<4))} 4=1 )) (dervie-any-3rot0 n (fin≤n {3} (dba0<3 tdba)) (fin≤n {4} (dba1<4 tdba)))