Mercurial > hg > Members > kono > Proof > galois
changeset 100:0fa8a49dc38b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 31 Aug 2020 15:25:45 +0900 |
parents | cadfbf0c810b |
children | 92f3c9b926bd |
files | Putil.agda |
diffstat | 1 files changed, 15 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/Putil.agda Mon Aug 31 11:45:09 2020 +0900 +++ b/Putil.agda Mon Aug 31 15:25:45 2020 +0900 @@ -561,9 +561,11 @@ pcong-pF : {n : ℕ } → {x y : Permutation n n} → x =p= y → perm→FL x ≡ perm→FL y pcong-pF {zero} eq = refl -pcong-pF {suc n} {x} {y} eq = cong₂ (λ j k → j :: k ) ( peq eq (# 0)) (pcong-pF (shrink-cong (presp eq (record { peq = p-inv p001} )) (p=0 x) (p=0 y))) where - p001 : pins (toℕ≤pred[n] (x ⟨$⟩ʳ (# 0))) =p= pins (toℕ≤pred[n] (y ⟨$⟩ʳ (# 0))) - p001 = {!!} +pcong-pF {suc n} {x} {y} eq = cong₂ (λ j k → j :: k ) ( peq eq (# 0)) (pcong-pF (shrink-cong (presp eq p001 ) (p=0 x) (p=0 y))) where + p002 : x ⟨$⟩ʳ (# 0) ≡ y ⟨$⟩ʳ (# 0) + p002 = peq eq (# 0) + p001 : flip (pins (toℕ≤pred[n] (x ⟨$⟩ʳ (# 0)))) =p= flip (pins (toℕ≤pred[n] (y ⟨$⟩ʳ (# 0)))) + p001 = subst ( λ k → flip (pins (toℕ≤pred[n] (x ⟨$⟩ʳ (# 0)))) =p= flip (pins (toℕ≤pred[n] k ))) p002 prefl -- t5 = plist t4 ∷ plist ( t4 ∘ₚ flip (pins ( n≤ 3 ) )) t5 = plist (t4) ∷ plist (flip t4) @@ -578,18 +580,22 @@ FL→iso : {n : ℕ } → (fl : FL n ) → perm→FL ( FL→perm fl ) ≡ fl FL→iso f0 = refl -FL→iso (x :: fl) = cong₂ ( λ j k → j :: k ) f001 f002 where +FL→iso {suc n} (x :: fl) = cong₂ ( λ j k → j :: k ) f001 f002 where perm = pprep (FL→perm fl) ∘ₚ pins ( toℕ≤pred[n] x ) f001 : perm ⟨$⟩ʳ (# 0) ≡ x - f001 = {!!} + f001 = begin + (pprep (FL→perm fl) ∘ₚ pins ( toℕ≤pred[n] x )) ⟨$⟩ʳ (# 0) + ≡⟨ {!!} ⟩ + x + ∎ x=0 : (perm ∘ₚ flip (pins (toℕ≤pred[n] x))) ⟨$⟩ˡ (# 0) ≡ # 0 - x=0 = {!!} + x=0 = subst ( λ k → (perm ∘ₚ flip (pins (toℕ≤pred[n] k))) ⟨$⟩ˡ (# 0) ≡ # 0 ) f001 (p=0 perm) x=0' : (pprep (FL→perm fl) ∘ₚ pid) ⟨$⟩ˡ (# 0) ≡ # 0 - x=0' = {!!} + x=0' = refl f002 : perm→FL (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm) ) ≡ fl f002 = begin perm→FL (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ (# 0))))) (p=0 perm) ) - ≡⟨ pcong-pF (shrink-cong (presp prefl {!!}) (p=0 perm) x=0) ⟩ + ≡⟨ pcong-pF (shrink-cong {n} (presp prefl {!!}) (p=0 perm) x=0) ⟩ perm→FL (shrink (perm ∘ₚ flip (pins (toℕ≤pred[n] x))) x=0 ) ≡⟨⟩ perm→FL (shrink ((pprep (FL→perm fl) ∘ₚ pins ( toℕ≤pred[n] x )) ∘ₚ flip (pins (toℕ≤pred[n] x))) x=0 ) @@ -597,7 +603,7 @@ perm→FL (shrink (pprep (FL→perm fl) ∘ₚ (pins ( toℕ≤pred[n] x ) ∘ₚ flip (pins (toℕ≤pred[n] x)))) x=0 ) ≡⟨ pcong-pF (shrink-cong record { peq = λ q → inverseʳ _ } x=0 x=0') ⟩ perm→FL (shrink (pprep (FL→perm fl) ∘ₚ pid) x=0' ) - ≡⟨ pcong-pF (shrink-cong prefl x=0' x=0') ⟩ + ≡⟨ pcong-pF (shrink-cong {n} prefl x=0' x=0') ⟩ perm→FL (shrink (pprep (FL→perm fl)) x=0' ) ≡⟨ pcong-pF shrink-iso ⟩ perm→FL ( FL→perm fl )