Mercurial > hg > Members > kono > Proof > galois
changeset 291:1f62d04b49f2
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 29 Jan 2023 21:59:08 +0900 |
parents | c870095531ef |
children | f59a9f4cfd78 |
files | src/FundamentalHomorphism.agda |
diffstat | 1 files changed, 23 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/src/FundamentalHomorphism.agda Sun Jan 29 21:05:55 2023 +0900 +++ b/src/FundamentalHomorphism.agda Sun Jan 29 21:59:08 2023 +0900 @@ -99,14 +99,14 @@ ; _≈_ = λ f g → ⟦ n f ⟧ ≈ ⟦ n g ⟧ ; _∙_ = qadd ; ε = qid - ; _⁻¹ = ? + ; _⁻¹ = λ f → record { n = n f ⁻¹ ; is-an = λ x → record { a = an.a (is-an f x) ∙ ⟦ n f ⟧ ∙ ⟦ n f ⟧ ; aN=x = qinv0 f x } } ; isGroup = record { isMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = record {refl = grefl ; trans = gtrans ; sym = gsym } - ; ∙-cong = λ {x} {y} {u} {v} x=y u=v → ? } - ; assoc = ? } - ; identity = ? , (λ q → ? ) } - ; inverse = ( (λ x → ? ) , (λ x → ? )) - ; ⁻¹-cong = λ i=j → ? + ; ∙-cong = λ {x} {y} {u} {v} x=y u=v → gtrans (homo _ _) ( gtrans (∙-cong x=y u=v) (gsym (homo _ _) )) } + ; assoc = qassoc } + ; identity = (λ q → ⟦⟧-cong (proj₁ identity _) ) , (λ q → ⟦⟧-cong (proj₂ identity _) ) } + ; inverse = (λ x → ⟦⟧-cong (proj₁ inverse _ )) , (λ x → ⟦⟧-cong (proj₂ inverse _ ) ) + ; ⁻¹-cong = λ {x} {y} → i-conv {x} {y} } } where open Group A @@ -120,16 +120,21 @@ qadd f g = record { n = n f ∙ n g ; is-an = λ x → record { a = x ⁻¹ ∙ ( a (is-an f x) ∙ a (is-an g x)) ; aN=x = qadd0 } } where qadd0 : {x : Carrier} → x ⁻¹ ∙ (a (is-an f x) ∙ a (is-an g x)) ∙ ⟦ n f ∙ n g ⟧ ≈ x qadd0 {x} = begin - x ⁻¹ ∙ (a (is-an f x) ∙ a (is-an g x)) ∙ ⟦ n f ∙ n g ⟧ ≈⟨ ? ⟩ + x ⁻¹ ∙ (a (is-an f x) ∙ a (is-an g x)) ∙ ⟦ n f ∙ n g ⟧ ≈⟨ solve monoid ⟩ x ⁻¹ ∙ (a (is-an f x) ∙ a (is-an g x) ∙ ⟦ n f ∙ n g ⟧) ≈⟨ ? ⟩ - x ⁻¹ ∙ (a (is-an f x) ∙ a (is-an g x) ∙ ( ⟦ n f ⟧ ∙ ⟦ n g ⟧ )) ≈⟨ ? ⟩ + x ⁻¹ ∙ (a (is-an f x) ∙ a (is-an g x) ∙ ( ⟦ n f ⟧ ∙ ⟦ n g ⟧ )) ≈⟨ solve monoid ⟩ x ⁻¹ ∙ (a (is-an f x) ∙ ( a (is-an g x) ∙ ⟦ n f ⟧) ∙ ⟦ n g ⟧) ≈⟨ ? ⟩ x ⁻¹ ∙ (a (is-an f x) ∙ ( ⟦ n f ⟧ ∙ a (is-an g x) ) ∙ ⟦ n g ⟧) ≈⟨ ? ⟩ x ⁻¹ ∙ ((a (is-an f x) ∙ ⟦ n f ⟧ ) ∙ ( a (is-an g x) ∙ ⟦ n g ⟧)) ≈⟨ ? ⟩ - x ⁻¹ ∙ (x ∙ x) ≈⟨ ? ⟩ + x ⁻¹ ∙ (x ∙ x) ≈⟨ solve monoid ⟩ (x ⁻¹ ∙ x ) ∙ x ≈⟨ ? ⟩ - ε ∙ x ≈⟨ ? ⟩ + ε ∙ x ≈⟨ solve monoid ⟩ x ∎ + qinv0 : (f : aN N) → (x : Carrier ) → (a (is-an f x) ∙ ⟦ n f ⟧ ∙ ⟦ n f ⟧) ∙ ⟦ n f ⁻¹ ⟧ ≈ x + qinv0 f x = begin + (a (is-an f x) ∙ ⟦ n f ⟧ ∙ ⟦ n f ⟧) ∙ ⟦ n f ⁻¹ ⟧ ≈⟨ ? ⟩ + a (is-an f x) ∙ ⟦ n f ⟧ ≈⟨ an.aN=x (is-an f x) ⟩ + x ∎ qid : aN N qid = record { n = ε ; is-an = λ x → record { a = x ; aN=x = qid1 } } where qid1 : {x : Carrier } → x ∙ ⟦ ε ⟧ ≈ x @@ -137,6 +142,14 @@ x ∙ ⟦ ε ⟧ ≈⟨ ∙-cong grefl ε-homo ⟩ x ∙ ε ≈⟨ proj₂ identity _ ⟩ x ∎ + qassoc : (f g h : aN N) → ⟦ n ( qadd (qadd f g) h) ⟧ ≈ ⟦ n( qadd f (qadd g h)) ⟧ + qassoc f g h = ⟦⟧-cong (assoc _ _ _ ) + i-conv : {x y : aN N} → ⟦ n x ⟧ ≈ ⟦ n y ⟧ → ⟦ n x ⁻¹ ⟧ ≈ ⟦ n y ⁻¹ ⟧ + i-conv {x} {y} nx=ny = begin + ⟦ n x ⁻¹ ⟧ ≈⟨ ⁻¹-homo _ ⟩ + ⟦ n x ⟧ ⁻¹ ≈⟨ ⁻¹-cong nx=ny ⟩ + ⟦ n y ⟧ ⁻¹ ≈⟨ gsym ( ⁻¹-homo _) ⟩ + ⟦ n y ⁻¹ ⟧ ∎ -- K ⊂ ker(f)