Mercurial > hg > Members > kono > Proof > galois
changeset 275:33d248c9081e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 26 Jan 2023 07:55:24 +0900 |
parents | 691b2ee844ef |
children | e83341c5c981 |
files | src/Fundamental.agda |
diffstat | 1 files changed, 25 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Fundamental.agda Thu Jan 26 01:16:38 2023 +0900 +++ b/src/Fundamental.agda Thu Jan 26 07:55:24 2023 +0900 @@ -58,6 +58,9 @@ ⟦_⟧ : Group.Carrier A → Group.Carrier A normal : IsGroupHomomorphism (GR A) (GR A) ⟦_⟧ comm : {a b : Carrier } → b ∙ ⟦ a ⟧ ≈ ⟦ a ⟧ ∙ b + -- this is not explict stared in the standard group theory + factor : (a b : Carrier) → Carrier + is-factor : (a b : Carrier) → b ∙ ⟦ factor a b ⟧ ≈ a -- Set of a ∙ ∃ n ∈ N -- @@ -70,10 +73,9 @@ open import Tactic.MonoidSolver using (solve; solve-macro) - _/_ : (A : Group c c ) (N : NormalSubGroup A ) → Group c c _/_ A N = record { - Carrier = (x : Group.Carrier A ) → aN N x + Carrier = (x : Group.Carrier A) → aN N x ; _≈_ = _=n=_ ; _∙_ = qadd ; ε = qid @@ -150,9 +152,7 @@ open EqReasoning (Algebra.Group.setoid G) φ : Group.Carrier G → Group.Carrier (G / K ) - φ g x = record { a = g ; n = g ⁻¹ ∙ x ; aN=x = ? } where - gk00 : g ∙ ⟦ ? ⟧ ≈ x - gk00 = ? + φ g x = record { a = g ; n = factor x g ; aN=x = is-factor x g } φ-homo : IsGroupHomomorphism (GR G) (GR (G / K)) φ φ-homo = record {⁻¹-homo = λ g → ? ; isMonoidHomomorphism = record { ε-homo = ? ; isMagmaHomomorphism = record { homo = ? ; isRelHomomorphism = @@ -164,17 +164,32 @@ φ-cong = ? inv-φ : Group.Carrier (G / K ) → Group.Carrier G - inv-φ f = ⟦ n (f ε) ⟧ + inv-φ f = a (f ε) ∙ ⟦ n (f ε) ⟧ where + afn = (a (f (a (f ε) ∙ ⟦ n (f ε) ⟧))) ⁻¹ cong-i : {f g : Group.Carrier (G / K ) } → ({x : Carrier } → ⟦ n (f x) ⟧ ≈ ⟦ n (g x) ⟧ ) → inv-φ f ≈ inv-φ g cong-i = ? + factor=nf : (f : (x : Carrier) → aN K x ) {y : Carrier} → ⟦ factor y ((a (f y)) ⁻¹ ) ⟧ ≈ ⟦ n (f y) ⟧ + factor=nf f {y} with f y + ... | record { a = fa ; n = fn ; aN=x = faN=x } = begin + ⟦ factor y z ⟧ ≈⟨ ? ⟩ + z ⁻¹ ∙ ( z ∙ ⟦ factor y z ⟧ ) ≈⟨ ? ⟩ + z ⁻¹ ∙ y ≈⟨ ? ⟩ + z ⁻¹ ∙ fa ∙ ⟦ fn ⟧ ≈⟨ ? ⟩ + ⟦ fn ⟧ ∎ where + z = fa ⁻¹ + is-inverse : (f : (x : Carrier) → aN K x ) → {y : Carrier} → ⟦ n (φ (inv-φ f) y) ⟧ ≈ ⟦ n (f y) ⟧ is-inverse f {y} = begin - ⟦ n (φ (inv-φ f) y) ⟧ ≈⟨ ? ⟩ - ⟦ n (φ (n (f ε)) y) ⟧ ≈⟨ ? ⟩ - ⟦ ε ⟧ ≈⟨ ? ⟩ - ⟦ n (f y) ⟧ ∎ + ⟦ n (φ (inv-φ f) y) ⟧ ≈⟨ grefl G ⟩ + ⟦ n (φ (a (f ε) ∙ ⟦ n (f ε) ⟧) y) ⟧ ≈⟨ grefl G ⟩ + ⟦ factor y (a (f ε) ∙ ⟦ n (f ε) ⟧) ⟧ ≈⟨ grefl G ⟩ + ⟦ factor y afn ⟧ ≈⟨ ? ⟩ + ⟦ factor y afn' ⟧ ≈⟨ factor=nf f ⟩ + ⟦ n (f y) ⟧ ∎ where + afn = a (f ε) ∙ ⟦ n (f ε) ⟧ + afn' = (a (f y)) ⁻¹ φ-surjective : Surjective φe φ-surjective = record { from = record { _⟨$⟩_ = inv-φ ; cong = λ {f} {g} → cong-i {f} {g} } ; right-inverse-of = is-inverse } where