Mercurial > hg > Members > kono > Proof > galois
changeset 67:3825082ebdbd
∀-FL : (n : ℕ ) → List (FL (suc n))
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 24 Aug 2020 14:50:27 +0900 |
parents | 442873eaf80b |
children | c184003e517d |
files | Putil.agda |
diffstat | 1 files changed, 11 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/Putil.agda Mon Aug 24 14:40:11 2020 +0900 +++ b/Putil.agda Mon Aug 24 14:50:27 2020 +0900 @@ -285,16 +285,17 @@ lem2 : {i n : ℕ } → i ≤ n → i ≤ suc n lem2 i≤n = ≤-trans i≤n ( refl-≤s ) -∀-FL : {n : ℕ } → Fin n → List (FL n) -∀-FL x = ∀-FL1 x where - ∀-FL2 : { n : ℕ } → Fin (suc n) → (i : ℕ ) → i ≤ n → List (FL n) → List (FL (suc n)) → List (FL (suc n)) - ∀-FL2 y zero z≤n [] t = t - ∀-FL2 y zero z≤n (x ∷ fls) t = ∀-FL2 y zero z≤n fls (( zero :: x ) ∷ t ) - ∀-FL2 y (suc i) (s≤s lt) [] t = t - ∀-FL2 y (suc i) (s≤s lt) (fl ∷ fls) t = ∀-FL2 y i (lem2 lt) (fl ∷ fls) (( fromℕ≤ (s≤s (s≤s lt)) :: fl ) ∷ t ) - ∀-FL1 : {n : ℕ } → (Fin n) → List (FL n) - ∀-FL1 zero = [] - ∀-FL1 (suc x) = ∀-FL2 (suc x) (toℕ x) (≤-trans refl-≤s fin<n ) ( ∀-FL1 x) [] +∀-FL : (n : ℕ ) → List (FL (suc n)) +∀-FL x = fls6 x where + fls4 : ( i n : ℕ ) → (i<n : i ≤ n ) → FL n → List (FL (suc n)) → List (FL (suc n)) + fls4 zero n i≤n perm x = (zero :: perm ) ∷ x + fls4 (suc i) n i≤n perm x = fls4 i n (≤-trans refl-≤s i≤n ) perm ((fromℕ≤ (s≤s i≤n) :: perm ) ∷ x) + fls5 : ( n : ℕ ) → List (FL n) → List (FL (suc n)) → List (FL (suc n)) + fls5 n [] x = x + fls5 n (h ∷ x) y = fls5 n x (fls4 n n lem0 h y) + fls6 : ( n : ℕ ) → List (FL (suc n)) + fls6 zero = (zero :: f0) ∷ [] + fls6 (suc n) = fls5 (suc n) (fls6 n) [] all-perm : (n : ℕ ) → List (Permutation (suc n) (suc n) ) all-perm n = pls6 n where