Mercurial > hg > Members > kono > Proof > galois
changeset 280:523adaf1dcec
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 28 Jan 2023 17:10:05 +0900 |
parents | 386ece574509 |
children | 803f909fdd17 |
files | src/Fundamental.agda |
diffstat | 1 files changed, 33 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Fundamental.agda Sat Jan 28 10:55:32 2023 +0900 +++ b/src/Fundamental.agda Sat Jan 28 17:10:05 2023 +0900 @@ -55,6 +55,8 @@ import Axiom.Extensionality.Propositional postulate f-extensionality : { n m : Level} → Axiom.Extensionality.Propositional.Extensionality n m +open import Tactic.MonoidSolver using (solve; solve-macro) + record NormalSubGroup (A : Group c c ) : Set c where open Group A @@ -75,7 +77,11 @@ a n : Group.Carrier A aN=x : a ∙ ⟦ n ⟧ ≈ x -open import Tactic.MonoidSolver using (solve; solve-macro) +factor' : {A : Group c c } (N : NormalSubGroup A ) (f : (x : Group.Carrier A) → aN N x ) (a b : Group.Carrier A ) → Group.Carrier A +factor' = ? +is-factor' : {A : Group c c } (N : NormalSubGroup A ) (f : (x : Group.Carrier A) → aN N x ) → + (a b : Group.Carrier A ) → A < A < b ∙ ( NormalSubGroup.⟦_⟧ N (factor' {A} N f a b )) > ≈ a > +is-factor' {A} N f a b = ? _/_ : (A : Group c c ) (N : NormalSubGroup A ) → Group c c _/_ A N = record { @@ -256,7 +262,7 @@ z = fa ⁻¹ φ-factor : (f : Group.Carrier ( G / K )) → {x y : Carrier } → f ∋ x → f ∋ y → ⟦ n (f x) ⟧ ≈ ⟦ n (f y) ⟧ - φ-factor f {x} {y} gx gy = begin + φ-factor f {x} {y} fx fy = begin ⟦ n (f x) ⟧ ≈⟨ ? ⟩ (a (f x)) ⁻¹ ∙ x ≈⟨ ? ⟩ (((a (f y)) ⁻¹ ∙ y ) ∙ ((a (f y)) ⁻¹ ∙ y )) ⁻¹ ∙ ( (a (f x)) ⁻¹ ∙ x ) ≈⟨ ? ⟩ @@ -268,19 +274,39 @@ (a (f y)) ⁻¹ ∙ y ≈⟨ ? ⟩ ⟦ n (f y) ⟧ ∎ where fa00 : a (f x) ∙ ⟦ n (f x) ⟧ ≈ x - fa00 = gx + fa00 = fx fa01 : a (f y) ∙ ⟦ n (f y) ⟧ ≈ y - fa01 = gy + fa01 = fy an01 : (y : Carrier) → y ∙ ⟦ factor (a (f x)) y ⟧ ≈ a (f x) an01 y = is-factor (a (f x)) y an04 : a (f y) ∙ ⟦ factor (a (f x)) (a (f y)) ⟧ ≈ a (f x) an04 = is-factor (a (f x)) (a (f y)) + an07 : {z w : Carrier} → z ≈ w ∙ ⟦ factor z w ⟧ + an07 {z} {w} = gsym ( is-factor z w ) + an05 : {z : Carrier} → f ∋ z → ⟦ n (f z) ⟧ ≈ ⟦ factor z (a (f z)) ⟧ + an05 {z} fz = begin + ⟦ n (f z) ⟧ ≈⟨ ? ⟩ + ((a (f z) ⁻¹) ∙ a (f z)) ∙ ⟦ n (f z) ⟧ ≈⟨ ? ⟩ + (a (f z) ⁻¹) ∙ ( a (f z) ∙ ⟦ n (f z) ⟧) ≈⟨ ∙-cong grefl fz ⟩ + (a (f z) ⁻¹) ∙ z ≈⟨ ∙-cong grefl ( gsym ( is-factor z (a (f z)))) ⟩ + (a (f z) ⁻¹) ∙ (a (f z) ∙ ⟦ factor z (a (f z)) ⟧ ) ≈⟨ ? ⟩ + ⟦ factor z ( a ( f z)) ⟧ ∎ + an06 : {z : Carrier} → ⟦ factor z z ⟧ ≈ ε + an06 {z} = begin + ⟦ factor z z ⟧ ≈⟨ ? ⟩ + (z ⁻¹ ∙ z ) ∙ ⟦ factor z z ⟧ ≈⟨ ? ⟩ + z ⁻¹ ∙ ( z ∙ ⟦ factor z z ⟧ ) ≈⟨ ∙-cong grefl (is-factor z z) ⟩ + z ⁻¹ ∙ z ≈⟨ ? ⟩ + ε ∎ an03 : ⟦ n (f y) ⁻¹ ∙ n (f x) ⟧ ≈ ε an03 = begin ⟦ n (f y) ⁻¹ ∙ n (f x) ⟧ ≈⟨ ? ⟩ - ⟦ n (f y) ⁻¹ ⟧ ∙ ⟦ n (f x) ⟧ ≈⟨ ? ⟩ - ⟦ n (f y) ⟧ ⁻¹ ∙ ⟦ n (f x) ⟧ ≈⟨ ? ⟩ - ⟦ n (f y) ⟧ ⁻¹ ∙ (a (f x) ∙ x ⁻¹ ) ≈⟨ ? ⟩ + ⟦ factor y (a (f y)) ⟧ ⁻¹ ∙ ⟦ factor x (a (f x)) ⟧ ≈⟨ ? ⟩ + ⟦ factor y (a (f y)) ⟧ ⁻¹ ∙ ⟦ factor x ( x ∙ ⟦ n (f x) ⟧ ⁻¹ ) ⟧ ≈⟨ ? ⟩ + ⟦ n (f (y ⁻¹ ∙ x)) ⟧ ≈⟨ ? ⟩ + ⟦ factor (y ⁻¹ ∙ x) (a (f (y ⁻¹ ∙ x))) ⟧ ≈⟨ ? ⟩ + ⟦ n (f ⟦ ε ⟧ ) ⟧ ≈⟨ ? ⟩ + ⟦ ε ⟧ ≈⟨ ? ⟩ -- ⟦ n (f x) ⟧ ≡ ⟦ n (g x) ⟧ → ⟦ factor (a (g x)) (a (f x)) ⟧ ≈ ε ε ∎ is-inverse : (f : (x : Carrier) → aN K x ) → {y : Carrier} → ⟦ n (φ (inv-φ f) y) ⟧ ≈ ⟦ n (f y) ⟧