Mercurial > hg > Members > kono > Proof > galois
changeset 162:57d475583f74
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 23 Nov 2020 00:48:18 +0900 |
parents | 254f3acb2091 |
children | d3d2083643d6 |
files | FLutil.agda Putil.agda sym3.agda sym3n.agda sym4.agda |
diffstat | 5 files changed, 21 insertions(+), 21 deletions(-) [+] |
line wrap: on
line diff
--- a/FLutil.agda Sun Sep 20 10:34:54 2020 +0900 +++ b/FLutil.agda Mon Nov 23 00:48:18 2020 +0900 @@ -234,28 +234,24 @@ ∀FList zero = record { ∀list = f0 ∷# [] ; x∈∀list = af1 } where af1 : (x : FL zero) → Any (_≡_ x) (cons f0 [] (Level.lift tt)) af1 f0 = here refl -∀FList (suc n) = record { ∀list = af1 (suc n) ≤-refl ; x∈∀list = λ x → af2 x (af1 (suc n) ≤-refl ) } where +∀FList (suc n) = record { ∀list = af4 n ≤-refl (∀FListP.∀list af0) [] + ; x∈∀list = λ x → af2 x ( af4 n ≤-refl (∀FListP.∀list af0) [] ) } where af0 : ∀FListP n af0 = ∀FList n af3 : (w : Fin (suc n)) (x y : FL n) → Level.Lift Level.zero (True (x f<? y )) → (w :: x ) f< (w :: y ) af3 w x y (Level.lift z) with x f<? y ... | yes x<y = f<t x<y - af4 : (i : ℕ) → (i<n : i < suc n) → ( y y1 : FList n ) → ( z : FList (suc n)) → FList (suc n) - af4r : (i : ℕ) → (i<n : i < suc n) → (a : FL n) → ( y y1 : FList n ) → ( z : FList (suc n)) - → fresh (FL n) ⌊ _f<?_ ⌋ a y - → fresh (FL (suc n)) ⌊ _f<?_ ⌋ (fromℕ< i<n :: a) (af4 i i<n y y1 z ) - af4 zero i<n [] _ z = z - af4 (suc i) (s≤s i<n) [] y z = af4 i (≤-trans i<n a≤sa) y y z - af4 zero (s≤s i<n) (cons a y x) y1 z = cons (fromℕ< (s≤s i<n) :: a) (af4 zero 0<s y y1 z ) (af4r zero 0<s a y y1 z x) - af4 (suc i) (s≤s i<n) (cons a y x) y1 z = cons (fromℕ< (≤-trans i<n a≤sa) :: a) (af4 i (≤-trans i<n a≤sa) y y1 z ) (af4r i (≤-trans i<n a≤sa) a y y1 z x) - -- fresh (FL n) ⌊ _f<?_ ⌋ a y → fresh (FL (suc n)) ⌊ _f<?_ ⌋ (fromℕ< i<n :: a) (af4 i i<n y y1 z) - af4r zero (s≤s z≤n) a [] y1 [] (lift tt) = Level.lift tt - af4r zero (s≤s z≤n) a [] y1 (cons a₁ z x) (lift tt) = {!!} , af4r zero (s≤s z≤n) a [] y1 z (Level.lift tt) - af4r zero (s≤s z≤n) a (cons a₁ y x₁) y1 z x = {!!} - af4r (suc i) i<n a y y1 z x = {!!} - af1 : (i : ℕ ) → i ≤ suc n → FList (suc n) - af1 zero i<n = Data.List.Fresh.map (zero ::_ ) (λ {x} {x₁} xr → Level.lift (fromWitness (af3 zero x x₁ xr ) )) (∀FListP.∀list af0 ) - af1 (suc i) (s≤s i<n) = af4 i (s≤s i<n) (∀FListP.∀list af0 ) (∀FListP.∀list af0 ) ( af1 i (≤-trans i<n a≤sa)) + af4r : (i : ℕ) → (i<n : i < suc n) → ( y : FList n ) → (y1 : FList (suc n)) → ( a : FL n) + → fresh (FL (suc n)) ⌊ _f<?_ ⌋ (fromℕ< i<n :: a) y1 + af4r zero i<n y [] a = Level.lift tt + af4r zero i<n y (cons a₁ y1 x) a = {!!} , af4r zero i<n y y1 a + af4r (suc i) i<n y [] a = Level.lift tt + af4r (suc i) i<n y (cons a₁ y1 x) a = {!!} , af4r (suc i) i<n y y1 a + af4 : (i : ℕ) → (i<n : i < suc n) → ( y : FList n ) → (y1 : FList (suc n)) → FList (suc n) + af4 zero i<n [] y1 = y1 + af4 (suc i) (s≤s i<n) [] y1 = af4 i (≤-trans i<n a≤sa) (∀FListP.∀list af0) y1 + af4 zero (s≤s i<n) (cons a y x) y1 = af4 zero 0<s y (cons (fromℕ< (s≤s i<n) :: a) y1 (af4r zero (s≤s i<n) y y1 a)) + af4 (suc i) (s≤s i<n) (cons a y x) y1 = af4 i (≤-trans i<n a≤sa) y (cons (fromℕ< (s≤s i<n) :: a) y1 (af4r (suc i) (s≤s i<n) y y1 a)) af2 : (x : FL (suc n)) → (y : FList (suc n)) → Any (_≡_ x) y af2 = {!!}
--- a/Putil.agda Sun Sep 20 10:34:54 2020 +0900 +++ b/Putil.agda Mon Nov 23 00:48:18 2020 +0900 @@ -197,7 +197,7 @@ p11 : fromℕ< (≤-trans (fin<n {_} {y}) a≤sa ) ≡ suc x p11 = begin fromℕ< (≤-trans (fin<n {_} {y}) a≤sa ) - ≡⟨ fromℕ<-irrelevant _ _ p12 _ (s≤s (fin<n {suc n})) ⟩ + ≡⟨ lemma10 p12 ⟩ suc (fromℕ< (fin<n {suc n} {x} )) ≡⟨ cong suc (fromℕ<-toℕ x _ ) ⟩ suc x @@ -278,7 +278,7 @@ p004 = p003 (fromℕ< (s≤s (s≤s m≤n))) ( begin fromℕ< (s≤s (s≤s m≤n)) - ≡⟨ fromℕ<-irrelevant _ _ (cong suc meq) (s≤s (s≤s m≤n)) (subst (λ k → suc k < suc (suc n)) meq (s≤s (s≤s m≤n)) ) ⟩ + ≡⟨ lemma10 (cong suc meq) {s≤s (s≤s m≤n)} {subst (λ k → suc k < suc (suc n)) meq (s≤s (s≤s m≤n)) } ⟩ fromℕ< (subst (λ k → suc k < suc (suc n)) meq (s≤s (s≤s m≤n)) ) ≡⟨ fromℕ<-toℕ {suc (suc n)} (suc t) (subst (λ k → suc k < suc (suc n)) meq (s≤s (s≤s m≤n)) ) ⟩ suc t
--- a/sym3.agda Sun Sep 20 10:34:54 2020 +0900 +++ b/sym3.agda Mon Nov 23 00:48:18 2020 +0900 @@ -13,6 +13,7 @@ open import Gutil open import Putil +open import FLutil open import Solvable using (solvable) open import Relation.Binary.PropositionalEquality hiding ( [_] ) @@ -122,7 +123,7 @@ ... | (zero :: (suc zero) :: (zero :: f0 )) | ((suc (suc zero)) :: (suc zero) :: (zero :: f0))| record { eq = ge } | record { eq = he } = case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | ((suc zero) :: (zero :: (zero :: f0 ))) | (zero :: (suc zero) :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = - case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) + case2 (case1 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | ((suc zero) :: (zero :: (zero :: f0 ))) | (suc zero) :: (suc zero :: (zero :: f0 )) | record { eq = ge } | record { eq = he } = case2 (case2 (ptrans (comm-resp (pFL g ge) (pFL h he)) (FL-inject refl) )) ... | ((suc zero) :: (zero :: (zero :: f0 ))) | ((suc (suc zero)) :: (zero :: (zero :: f0 )))| record { eq = ge } | record { eq = he } =
--- a/sym3n.agda Sun Sep 20 10:34:54 2020 +0900 +++ b/sym3n.agda Mon Nov 23 00:48:18 2020 +0900 @@ -47,7 +47,7 @@ tl2 (h ∷# x) z w = tl2 x z (tl3 h z w) stage10 : FList 3 - stage10 = t1 (Flist (fmax )) + stage10 = {!!} -- t1 (Flist (fmax )) p0 = FL→perm ((# 0) :: ((# 0) :: ((# 0 ) :: f0))) p1 = FL→perm ((# 0) :: ((# 1) :: ((# 0 ) :: f0)))