Mercurial > hg > Members > kono > Proof > galois
changeset 9:6bbd861e9ae8
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 17 Aug 2020 13:50:38 +0900 |
parents | 4e275f918e63 |
children | 04f40fc4eb69 |
files | Solvable.agda |
diffstat | 1 files changed, 28 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/Solvable.agda Mon Aug 17 12:56:53 2020 +0900 +++ b/Solvable.agda Mon Aug 17 13:50:38 2020 +0900 @@ -56,6 +56,34 @@ f ∎ where open EqReasoning (Algebra.Group.setoid G) +data MP : Carrier → Set (Level.suc n) where + am : (x : Carrier ) → MP x + _o_ : {x y : Carrier } → MP x → MP y → MP ( x ∙ y ) + +mpf : {x : Carrier } → (m : MP x ) → Carrier → Carrier +mpf {x} (am x) y = x ∙ y +mpf (m o m₁) y = mpf m ( mpf m₁ y ) + +mp-flatten : {x : Carrier } → (m : MP x ) → Carrier +mp-flatten {x} m = mpf {x} m ε + +∙-flatten : {x : Carrier } → (m : MP x ) → x ≈ mp-flatten m +∙-flatten {x} (am x) = gsym (proj₂ identity _) +∙-flatten {_} (am x o q) = ∙-cong grefl ( ∙-flatten q ) +∙-flatten {w} (_o_ {x} {y} p q ) = lemma8 w x y _≡_.refl where + lemma8 : (w x y : Carrier ) → w ≡ x ∙ y → x ∙ y ≈ mpf p (mpf q ε) + lemma8 w x y refl with ∙-flatten p | ∙-flatten q + ... | eq | eq1 = {!!} + +-- x ∙ y ∙ z ≈⟨ assoc _ _ _ ⟩ +-- x ∙ ({!!} ∙ ?) ≈⟨ ∙-cong grefl ( +-- ? ≈⟨ {!!} ⟩ +-- x ∙ ( mpf q (mpf r ε )) ≈⟨ {!!} ⟩ +-- mpf p (mpf q (mpf r ε)) ≈⟨ grefl ⟩ +-- mp-flatten ((p o q) o r) +-- ∎ where open EqReasoning (Algebra.Group.setoid G) + + lemma5 : (f g : Carrier ) → g ⁻¹ ∙ f ⁻¹ ≈ (f ∙ g) ⁻¹ lemma5 f g = begin g ⁻¹ ∙ f ⁻¹ ≈⟨ gsym (proj₂ identity _) ⟩