Mercurial > hg > Members > kono > Proof > galois
changeset 308:76c80a6ad4e6
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 11 Sep 2023 16:08:09 +0900 |
parents | 7ef312aa0235 |
children | 4dd130b93b21 |
files | src/Homomorphism.agda |
diffstat | 1 files changed, 33 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Homomorphism.agda Mon Sep 11 09:02:40 2023 +0900 +++ b/src/Homomorphism.agda Mon Sep 11 16:08:09 2023 +0900 @@ -299,7 +299,6 @@ open IsGroupHomomorphism f-homo open EqReasoning (Algebra.Group.setoid H) - h : Group.Carrier (G / K ) → Group.Carrier H h r = f r h03 : (x y : Group.Carrier (G / K ) ) → h ( (G / K) < x ∙ y > ) ≈ h x ∙ h y @@ -353,12 +352,12 @@ isGroupHomomorphism = record { isMonoidHomomorphism = record { isMagmaHomomorphism = record { - isRelHomomorphism = record { cong = λ {x} {y} eq → ? } - ; homo = ? } - ; ε-homo = ? } - ; ⁻¹-homo = ? } - ; injective = λ x → ? } - ; surjective = λ nx → ? , ? + isRelHomomorphism = record { cong = λ {x} {y} eq → h04 eq } + ; homo = homo } + ; ε-homo = ε-homo } + ; ⁻¹-homo = ⁻¹-homo } + ; injective = λ eq → AN.ab⁻¹∈N→a=b G (Ker G H f-homo) (h06 eq) } + ; surjective = λ nx → (IsImage.gelm (Nelm.Pelm nx)) , h07 nx } where open GK G (Ker G H f-homo) open Group H @@ -366,6 +365,33 @@ open IsGroupHomomorphism f-homo open EqReasoning (Algebra.Group.setoid H) open Nelm + GC = Group.Carrier G + h07 : (nx : Nelm H (Im G f-homo)) → f (IsImage.gelm (Nelm.Pelm nx)) ≈ elm nx + h07 nx = gsym ( IsImage.x=fg (Nelm.Pelm nx) ) + h06 : {x y : GC} → f x ≈ f y → f (G < x ∙ Group._⁻¹ G y >) ≈ ε + h06 {x} {y} fx=fy = begin + f (G < x ∙ Group._⁻¹ G y >) ≈⟨ homo _ _ ⟩ + f x ∙ f (Group._⁻¹ G y ) ≈⟨ cdr (⁻¹-homo _) ⟩ + f x ∙ f y ⁻¹ ≈⟨ car fx=fy ⟩ + f y ∙ f y ⁻¹ ≈⟨ proj₂ inverse _ ⟩ + ε ∎ + h = f + h04 : {x y : Group.Carrier G} → aNeq (Ker G H f-homo) x y → f x ≈ f y + h04 {x} {y} x=y = h20 where + kf : h (G < x ∙ (G Group.⁻¹) y >) ≈ ε + kf = begin + h (G < x ∙ (G Group.⁻¹) y >) ≈⟨ AN.a=b→ab⁻¹∈N G (Ker G H f-homo) x=y ⟩ + ε ∎ + h20 : f x ≈ f y + h20 = begin + h x ≈⟨ gsym (proj₂ identity _) ⟩ + h x ∙ ε ≈⟨ cdr (gsym (proj₁ inverse _)) ⟩ + h x ∙ ((h y) ⁻¹ ∙ h y) ≈⟨ solve monoid ⟩ + (h x ∙ (h y) ⁻¹ ) ∙ h y ≈⟨ gsym (car (cdr (⁻¹-homo _ ))) ⟩ + (h x ∙ h (Group._⁻¹ G y )) ∙ h y ≈⟨ gsym (car (homo _ _)) ⟩ + h (G < x ∙ (Group._⁻¹ G y ) > ) ∙ h y ≈⟨ car kf ⟩ + ε ∙ h y ≈⟨ proj₁ identity _ ⟩ + h y ∎