Mercurial > hg > Members > kono > Proof > galois
changeset 307:7ef312aa0235
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 11 Sep 2023 09:02:40 +0900 |
parents | c422ae2f2d66 |
children | 76c80a6ad4e6 |
files | src/Homomorphism.agda src/NormalSubGroup.agda |
diffstat | 2 files changed, 97 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Homomorphism.agda Sat Sep 09 11:20:21 2023 +0900 +++ b/src/Homomorphism.agda Mon Sep 11 09:02:40 2023 +0900 @@ -179,12 +179,12 @@ Ker : {c d : Level} (G H : Group c d) {f : Group.Carrier G → Group.Carrier H } (f-homo : IsGroupHomomorphism (GR G) (GR H) f ) → NormalSubGroup {d} G -Ker {c} {d} G H {f} f-homo = record { +Ker {c} {d} G H {f} f-homo = record { Psub = record { P = λ x → f x ≈ ε ; Pε = ε-homo ; P⁻¹ = im01 ; P≈ = im02 - ; P∙ = im03 + ; P∙ = im03 } ; Pcomm = im04 } where open Group H @@ -223,10 +223,48 @@ ε ∙ ε ≈⟨ proj₁ identity _ ⟩ ε ∎ +record IsImage {c d : Level} (G : Group c d) (H : Group c d) + {f : Group.Carrier G → Group.Carrier H } + (f-homo : IsGroupHomomorphism (GR G) (GR H) f ) (x : Group.Carrier H) : Set (c Level.⊔ d) where + field + gelm : Group.Carrier G + x=fg : H < x ≈ f gelm > + + Im : {c d : Level} (G : Group c d) {H : Group c d} {f : Group.Carrier G → Group.Carrier H } - (f-homo : IsGroupHomomorphism (GR G) (GR H) f ) → Group _ _ -Im G {H} {f} f-homo = G / Ker G H f-homo + (f-homo : IsGroupHomomorphism (GR G) (GR H) f ) → SubGroup {c Level.⊔ d} H +Im G {H} {f} f-homo = record { + P = λ x → IsImage G H f-homo x + ; Pε = record { gelm = Group.ε G ; x=fg = gsym ε-homo } + ; P⁻¹ = λ x imx → record { gelm = Group._⁻¹ G (gelm imx) ; x=fg = im00 (x=fg imx) } + ; P≈ = im01 + ; P∙ = im02 } where + open IsImage + open Group H + open Gutil H + open IsGroupHomomorphism f-homo + open EqReasoning (Algebra.Group.setoid H) + GC = Group.Carrier G + im00 : {x : Carrier } {y : GC } → x ≈ f y → x ⁻¹ ≈ f ((G Group.⁻¹) y ) + im00 {x} {y} x=fy = begin + x ⁻¹ ≈⟨ ⁻¹-cong x=fy ⟩ + (f y) ⁻¹ ≈⟨ gsym ( ⁻¹-homo _) ⟩ + f ((G Group.⁻¹) y ) ∎ + im01 : {a b : Carrier} → a ≈ b → IsImage G H f-homo a → IsImage G H f-homo b + im01 {a} {b} a=b ima = record { gelm = _ ; x=fg = gtrans (gsym a=b) (x=fg ima) } + im02 : {a b : Carrier} → + IsImage G H f-homo a → + IsImage G H f-homo b → IsImage G H f-homo (a ∙ b) + im02 {a} {b} isa isb = record { gelm = G < gelm isa ∙ gelm isb > ; x=fg = im03 } where + im03 : a ∙ b ≈ f (G < gelm isa ∙ gelm isb > ) + im03 = begin + a ∙ b ≈⟨ ∙-cong (x=fg isa) (x=fg isb) ⟩ + f (gelm isa ) ∙ f (gelm isb ) ≈⟨ gsym (homo _ _ ) ⟩ + f (G < gelm isa ∙ gelm isb > ) ∎ + + + module GK {c d : Level} (G : Group c d) (K : NormalSubGroup G ) where φ : Group.Carrier G → Group.Carrier (G / K ) -- a → aN @@ -297,10 +335,37 @@ f x ≈⟨ h1-is-solution _ ⟩ h1 x ∎ -- --- Fundamental Homomorphism Theorm on G / Imf f gives another form of Fundamental Homomorphism Theorm +-- Another from of Fundamental Homomorphism Theorm -- i.e. G / Ker f ≈ Im f +im : {c d : Level} (G : Group c d) {H : Group c d} {f : Group.Carrier G → Group.Carrier H } + → (f-homo : IsGroupHomomorphism (GR G) (GR H) f ) + → (x : Group.Carrier G) + → Nelm H (Im G f-homo) +im G {H} {f} f-homo x = record { elm = f x ; Pelm = record { gelm = x ; x=fg = Gutil.grefl H } } + +FundamentalHomomorphismTheorm2 : {c d : Level} (G : Group c d) {H : Group c d} + {f : Group.Carrier G → Group.Carrier H } + (f-homo : IsGroupHomomorphism (GR G) (GR H) f ) → + IsGroupIsomorphism (GR (G / Ker G H f-homo)) (GR (SGroup H (Im G f-homo))) (im G f-homo) +FundamentalHomomorphismTheorm2 G {H} {f} f-homo = record { + isGroupMonomorphism = record { -- this is essentially f-homo except cong + isGroupHomomorphism = record { + isMonoidHomomorphism = record { + isMagmaHomomorphism = record { + isRelHomomorphism = record { cong = λ {x} {y} eq → ? } + ; homo = ? } + ; ε-homo = ? } + ; ⁻¹-homo = ? } + ; injective = λ x → ? } + ; surjective = λ nx → ? , ? + } where + open GK G (Ker G H f-homo) + open Group H + open Gutil H + open IsGroupHomomorphism f-homo + open EqReasoning (Algebra.Group.setoid H) + open Nelm + - -
--- a/src/NormalSubGroup.agda Sat Sep 09 11:20:21 2023 +0900 +++ b/src/NormalSubGroup.agda Mon Sep 11 09:02:40 2023 +0900 @@ -54,9 +54,7 @@ infixr 9 _<_∙_> --- assuming Homomorphism is too strong --- -record NormalSubGroup {l c d : Level} (A : Group c d ) : Set (Level.suc (l Level.⊔ (c Level.⊔ d))) where +record SubGroup {l c d : Level} (A : Group c d ) : Set (Level.suc (l Level.⊔ (c Level.⊔ d))) where open Group A field P : Carrier → Set l @@ -64,21 +62,38 @@ P⁻¹ : (a : Carrier ) → P a → P (a ⁻¹) P≈ : {a b : Carrier } → a ≈ b → P a → P b P∙ : {a b : Carrier } → P a → P b → P ( a ∙ b ) + +-- assuming Homomorphism is too strong +-- +record NormalSubGroup {l c d : Level} (A : Group c d ) : Set (Level.suc (l Level.⊔ (c Level.⊔ d))) where + open Group A + field + Psub : SubGroup {l} A -- gN ≈ Ng - Pcomm : {a b : Carrier } → P a → P ( b ∙ ( a ∙ b ⁻¹ ) ) + Pcomm : {a b : Carrier } → SubGroup.P Psub a → SubGroup.P Psub ( b ∙ ( a ∙ b ⁻¹ ) ) + P : Carrier → Set l + P = SubGroup.P Psub + Pε : P ε + Pε = SubGroup.Pε Psub + P⁻¹ : (a : Carrier ) → P a → P (a ⁻¹) + P⁻¹ = SubGroup.P⁻¹ Psub + P≈ : {a b : Carrier } → a ≈ b → P a → P b + P≈ = SubGroup.P≈ Psub + P∙ : {a b : Carrier } → P a → P b → P ( a ∙ b ) + P∙ = SubGroup.P∙ Psub import Relation.Binary.Reasoning.Setoid as EqReasoning -record Nelm {c d : Level} {A : Group c d } (n : NormalSubGroup {d} A) : Set (Level.suc c ⊔ d) where +record Nelm {c d e : Level} (A : Group c d ) (n : SubGroup {e} A) : Set (Level.suc e ⊔ (Level.suc c ⊔ d)) where open Group A - open NormalSubGroup n + open SubGroup n field elm : Carrier Pelm : P elm -NGroup : {c d : Level} {A : Group c d } (n : NormalSubGroup A) → Group (Level.suc c ⊔ d) d -NGroup {_} {_} {A} n = record { - Carrier = Nelm n +SGroup : {c d e : Level} (A : Group c d ) (n : SubGroup {e} A) → Group (Level.suc e ⊔ (Level.suc c ⊔ d)) d +SGroup {_} {_} {_} A n = record { + Carrier = Nelm A n ; _≈_ = λ x y → elm x ≈ elm y ; _∙_ = λ x y → record { elm = elm x ∙ elm y ; Pelm = P∙ (Pelm x) (Pelm y) } ; ε = record { elm = ε ; Pelm = Pε } @@ -94,7 +109,7 @@ ; ⁻¹-cong = IsGroup.⁻¹-cong ga } } where open Group A - open NormalSubGroup n + open SubGroup n open Nelm ga = Group.isGroup A