Mercurial > hg > Members > kono > Proof > galois
changeset 11:9dae7ef74342
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 17 Aug 2020 14:40:54 +0900 |
parents | 04f40fc4eb69 |
children | d960f2ea902f |
files | Solvable.agda |
diffstat | 1 files changed, 25 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/Solvable.agda Mon Aug 17 14:02:04 2020 +0900 +++ b/Solvable.agda Mon Aug 17 14:40:54 2020 +0900 @@ -38,6 +38,7 @@ gsym = Algebra.Group.sym G grefl = Algebra.Group.refl G +gtrans = Algebra.Group.trans G lemma3 : ε ≈ ε ⁻¹ lemma3 = begin @@ -56,6 +57,9 @@ f ∎ where open EqReasoning (Algebra.Group.setoid G) +≡→≈ : {f g : Carrier } → f ≡ g → f ≈ g +≡→≈ refl = grefl + data MP : Carrier → Set (Level.suc n) where am : (x : Carrier ) → MP x _o_ : {x y : Carrier } → MP x → MP y → MP ( x ∙ y ) @@ -66,16 +70,30 @@ mp-flatten : {x : Carrier } → (m : MP x ) → Carrier mp-flatten {x} m = mpf {x} m ε - + ∙-flatten : {x : Carrier } → (m : MP x ) → x ≈ mp-flatten m ∙-flatten {x} (am x) = gsym (proj₂ identity _) ∙-flatten {_} (am x o q) = ∙-cong grefl ( ∙-flatten q ) -∙-flatten (_o_ {_} {z} (_o_ {x} {y} p q) r) with ∙-flatten (p o q ) -- t : x ∙ y ≈ mpf p (mpf q ε) -... | t = begin - x ∙ y ∙ z ≈⟨ ∙-cong t grefl ⟩ - mpf p (mpf q ε) ∙ z ≈⟨ {!!} ⟩ - mpf p (mpf q (mpf r ε)) - ∎ where open EqReasoning (Algebra.Group.setoid G) +∙-flatten (_o_ {_} {z} (_o_ {x} {y} p q) r) = lemma9 _ _ _ ( ∙-flatten {x ∙ y } (p o q )) ( ∙-flatten {z} r ) where + mp-cong : {p q r : Carrier} → (P : MP p) → q ≈ r → mpf P q ≈ mpf P r + mp-cong (am x) q=r = ∙-cong grefl q=r + mp-cong (P o P₁) q=r = mp-cong P ( mp-cong P₁ q=r ) + mp-assoc : {p q r : Carrier} → (P : MP p) → mpf P q ∙ r ≈ mpf P (q ∙ r ) + mp-assoc (am x) = assoc _ _ _ + mp-assoc {p} {q} {r} (P o P₁) = begin + mpf P (mpf P₁ q) ∙ r ≈⟨ mp-assoc P ⟩ + mpf P (mpf P₁ q ∙ r) ≈⟨ mp-cong P (mp-assoc P₁) ⟩ + mpf P ((mpf P₁) (q ∙ r)) + ∎ where open EqReasoning (Algebra.Group.setoid G) + lemma9 : (x y z : Carrier) → x ∙ y ≈ mpf p (mpf q ε) → z ≈ mpf r ε → x ∙ y ∙ z ≈ mp-flatten ((p o q) o r) + lemma9 x y z t s = begin + x ∙ y ∙ z ≈⟨ ∙-cong t grefl ⟩ + mpf p (mpf q ε) ∙ z ≈⟨ mp-assoc p ⟩ + mpf p (mpf q ε ∙ z) ≈⟨ mp-cong p (mp-assoc q ) ⟩ + mpf p (mpf q (ε ∙ z)) ≈⟨ mp-cong p (mp-cong q (proj₁ identity _ )) ⟩ + mpf p (mpf q z) ≈⟨ mp-cong p (mp-cong q s) ⟩ + mpf p (mpf q (mpf r ε)) + ∎ where open EqReasoning (Algebra.Group.setoid G) lemma5 : (f g : Carrier ) → g ⁻¹ ∙ f ⁻¹ ≈ (f ∙ g) ⁻¹