Mercurial > hg > Members > kono > Proof > galois
changeset 306:c422ae2f2d66
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 09 Sep 2023 11:20:21 +0900 |
parents | ff135d2ef023 |
children | 7ef312aa0235 |
files | src/Homomorphism.agda |
diffstat | 1 files changed, 7 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Homomorphism.agda Sat Sep 09 10:45:47 2023 +0900 +++ b/src/Homomorphism.agda Sat Sep 09 11:20:21 2023 +0900 @@ -176,10 +176,10 @@ open Group H open NormalSubGroup K -Imf : {c d : Level} (G H : Group c d) - (f : Group.Carrier G → Group.Carrier H ) +Ker : {c d : Level} (G H : Group c d) + {f : Group.Carrier G → Group.Carrier H } (f-homo : IsGroupHomomorphism (GR G) (GR H) f ) → NormalSubGroup {d} G -Imf {c} {d} G H f f-homo = record { +Ker {c} {d} G H {f} f-homo = record { P = λ x → f x ≈ ε ; Pε = ε-homo ; P⁻¹ = im01 @@ -199,12 +199,6 @@ f a ⁻¹ ≈⟨ ⁻¹-cong fa=e ⟩ ε ⁻¹ ≈⟨ gsym ε≈ε⁻¹ ⟩ ε ∎ - im00 : (a : GC) → f a ≈ ε → f ((G Group.⁻¹) a) ≈ ε - im00 a fa=e = begin - f ((G Group.⁻¹) a) ≈⟨ ⁻¹-homo _ ⟩ - f a ⁻¹ ≈⟨ ⁻¹-cong fa=e ⟩ - ε ⁻¹ ≈⟨ gsym ε≈ε⁻¹ ⟩ - ε ∎ im02 : {a b : GC} → G < a ≈ b > → f a ≈ ε → f b ≈ ε im02 {a} {b} a=b fa=e = begin f b ≈⟨ ⟦⟧-cong (GU.gsym a=b) ⟩ @@ -229,10 +223,10 @@ ε ∙ ε ≈⟨ proj₁ identity _ ⟩ ε ∎ -FactorGroup : {c d : Level} (G : Group c d) {H : Group c d} +Im : {c d : Level} (G : Group c d) {H : Group c d} {f : Group.Carrier G → Group.Carrier H } (f-homo : IsGroupHomomorphism (GR G) (GR H) f ) → Group _ _ -FactorGroup G {H} {f} f-homo = G / Imf G H f f-homo +Im G {H} {f} f-homo = G / Ker G H f-homo module GK {c d : Level} (G : Group c d) (K : NormalSubGroup G ) where φ : Group.Carrier G → Group.Carrier (G / K ) -- a → aN @@ -285,7 +279,7 @@ ε ∙ h y ≈⟨ proj₁ identity _ ⟩ h y ∎ h-homo : IsGroupHomomorphism (GR (G / K ) ) (GR H) h - h-homo = record { -- this is essentially f-homo + h-homo = record { -- this is essentially f-homo except cong isMonoidHomomorphism = record { isMagmaHomomorphism = record { isRelHomomorphism = record { cong = λ {x} {y} eq → h04 eq } @@ -301,11 +295,10 @@ unique h1 h1-homo h1-is-solution x = begin h x ≈⟨ grefl ⟩ f x ≈⟨ h1-is-solution _ ⟩ - h1 ( φ x ) ≈⟨ IsGroupHomomorphism.⟦⟧-cong h1-homo (AN.nrefl G K) ⟩ h1 x ∎ -- -- Fundamental Homomorphism Theorm on G / Imf f gives another form of Fundamental Homomorphism Theorm --- i.e. G / Imf f ≈ Ker f +-- i.e. G / Ker f ≈ Im f