Mercurial > hg > Members > kono > Proof > galois
changeset 196:ca656da4d484
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 29 Nov 2020 22:24:50 +0900 |
parents | af2428b97f60 |
children | 57188c35ea1a |
files | FLComm.agda |
diffstat | 1 files changed, 8 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/FLComm.agda Sun Nov 29 21:36:02 2020 +0900 +++ b/FLComm.agda Sun Nov 29 22:24:50 2020 +0900 @@ -60,11 +60,14 @@ comm3 (H ∷# []) (here refl) L3 = subst (λ k → Any (_≡_ k) (FLinsert (perm→FL [ FL→perm G , FL→perm H ]) L3 ) ) comm6 (x∈FLins ( perm→FL [ FL→perm G , FL→perm H ] ) L3 ) -- Any (_≡_ (perm→FL [ g , h ])) (tl3 G (cons H (cons a L1 x) x₁) L3) - comm3 (cons H L1 x₁) (here refl) L3 = comma L1 where - comma : (L1 : FList n) → Any (_≡_ (perm→FL [ g , h ])) (tl3 G L1 (FLinsert (perm→FL [ FL→perm G , FL→perm H ]) L3)) - comma L1 with tl3 G L1 (FLinsert (perm→FL [ FL→perm G , FL→perm H ]) L3) | x∈FLins ( perm→FL [ FL→perm G , FL→perm H ] ) (tl3 G L1 (FLinsert (perm→FL [ FL→perm G , FL→perm H ]) L3)) - ... | [] | m = {!!} - ... | cons a t x | m = subst (λ k → Any (_≡_ (perm→FL [ g , h ])) k ) ? (there m) + comm3 (cons H L1 x₁) (here refl) L3 = comma L1 L3 where + commb : (a : FL n) → (L1 L3 : FList n) → (xr : fresh (FL n) ⌊ _f<?_ ⌋ a L1 ) + → Any (_≡_ (perm→FL [ g , h ])) (tl3 G L1 (FLinsert (perm→FL [ FL→perm G , FL→perm H ]) L3)) + → Any (_≡_ (perm→FL [ g , h ])) (tl3 G (cons a L1 xr) (FLinsert (perm→FL [ FL→perm G , FL→perm H ]) L3)) + commb a L1 L3 xr wh = {!!} + comma : (L1 L3 : FList n) → Any (_≡_ (perm→FL [ g , h ])) (tl3 G L1 (FLinsert (perm→FL [ FL→perm G , FL→perm H ]) L3)) + comma [] L3 = subst (λ k → Any (_≡_ k) (FLinsert (perm→FL [ FL→perm G , FL→perm H ]) L3 ) ) comm6 (x∈FLins ( perm→FL [ FL→perm G , FL→perm H ] ) L3 ) + comma (cons a L1 xr) L3 = commb a L1 L3 xr (comma L1 L3) comm3 (cons a L _) (there b) L3 = comm3 L b (FLinsert (perm→FL [ FL→perm G , FL→perm a ]) L3) comm2 : (L L1 : FList n) → Any (G ≡_) L → Any (H ≡_) L1 → (L3 : FList n) → Any (perm→FL [ g , h ] ≡_) (tl2 L L1 L3) comm2 (cons G L xr) L1 (here refl) b L3 = comm7 L L3 where