Mercurial > hg > Members > kono > Proof > galois
changeset 288:d08663bae245
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 29 Jan 2023 19:58:30 +0900 |
parents | 1874c573682f |
children | 7bbc5e5b208d |
files | src/FundamentalHomorphism.agda |
diffstat | 1 files changed, 17 insertions(+), 25 deletions(-) [+] |
line wrap: on
line diff
--- a/src/FundamentalHomorphism.agda Sun Jan 29 16:50:56 2023 +0900 +++ b/src/FundamentalHomorphism.agda Sun Jan 29 19:58:30 2023 +0900 @@ -83,42 +83,34 @@ n : Carrier is-an : (x : Carrier) → an N n x -record Factor (A : Group c c ) (N : NormalSubGroup A) (a b : Group.Carrier A ) : Set c where +f0 : {A : Group c c } (N : NormalSubGroup A ) (x y : Group.Carrier A) → an N x y +f0 {A} N x y = record { a = y ∙ ⟦ x ⟧ ⁻¹ ; aN=x = ? } where + open Group A + open NormalSubGroup N + open IsGroupHomomorphism normal + +record Factor (A : Group c c ) (N : NormalSubGroup A) (a b : Group.Carrier A) : Set c where open Group A open NormalSubGroup N open IsGroupHomomorphism normal field - factor : Carrier - is-factor : b ∙ ⟦ factor ⟧ ≈ a + factor : Carrier + is-factor : b ∙ ⟦ factor ⟧ ≈ a -¬¬Factor : (A : Group c c ) (N : NormalSubGroup A) → ¬ ¬ ( (a b : Group.Carrier A ) → Factor A N a b ) -¬¬Factor A N neg = ⊥-elim ( fa ( λ y → record { n = y ; is-an = λ x → record { a = x ∙ ⟦ y ⟧ ⁻¹ ; aN=x = f03 } } )) where +¬¬Factor : (A : Group c c ) (N : NormalSubGroup A) → ¬ ( ( x y : Group.Carrier A) → ¬ Factor A N x y ) +¬¬Factor A N neg = ⊥-elim ( fa (f0 N) ) where open Group A open NormalSubGroup N open IsGroupHomomorphism normal open EqReasoning (Algebra.Group.setoid A) open Gutil A open aN - f03 : {x y : Carrier } → x ∙ ⟦ y ⟧ ⁻¹ ∙ ⟦ y ⟧ ≈ x - f03 {x} {y} = begin - x ∙ ⟦ y ⟧ ⁻¹ ∙ ⟦ y ⟧ ≈⟨ ? ⟩ - x ∙ ( ⟦ y ⟧ ⁻¹ ∙ ⟦ y ⟧) ≈⟨ ? ⟩ - x ∎ - fa : ¬ ( (x : Carrier) → aN N ) - fa f = neg ( λ a b → record { factor = n (f ( a ∙ b ⁻¹)) ; is-factor = fa01 a b } ) where - fa01 : (a b : Carrier ) → b ∙ ⟦ n (f ( a ∙ b ⁻¹)) ⟧ ≈ a - fa01 a b = begin - b ∙ ⟦ n (f ( a ∙ b ⁻¹)) ⟧ ≈⟨ ? ⟩ - b ∙ ( ( b ⁻¹ ∙ ⟦ b ⟧ ) ∙ ( an.a (is-an (f ( a ∙ b ⁻¹) ) (a ∙ ⟦ b ⁻¹ ⟧ ) ) ∙ ⟦ n (f ( a ∙ b ⁻¹)) ⟧)) ≈⟨ cdr ( cdr (f06 ( a ∙ b ⁻¹) (a ∙ ⟦ b ⁻¹ ⟧ ))) ⟩ - b ∙ ( ( b ⁻¹ ∙ ⟦ b ⟧ ) ∙ (a ∙ ⟦ b ⁻¹ ⟧ )) ≈⟨ ? ⟩ - ⟦ b ⟧ ∙ ( a ∙ ⟦ b ⁻¹ ⟧ ) ≈⟨ ? ⟩ - a ∎ where - f06 : (x y : Carrier ) → an.a (is-an (f x) y ) ∙ ⟦ n (f x) ⟧ ≈ y - f06 x y = an.aN=x (is-an (f x) y) - f07 : (y : Carrier ) → an.a (is-an (f ( a ∙ b ⁻¹)) y ) ∙ ⟦ n (f ( a ∙ b ⁻¹)) ⟧ ≈ y - f07 y = an.aN=x (is-an (f ( a ∙ b ⁻¹)) y) - f08 : ( b ⁻¹ ∙ ⟦ b ⟧ ) ∙ ( an.a (is-an (f ( a ∙ b ⁻¹) ) (a ∙ ⟦ b ⁻¹ ⟧ ))) ≈ ε - f08 = ? + open an + + fa : ¬ ( (x y : Group.Carrier A) → an N x y ) + fa f = neg ε (a (f ε ε)) record { factor = ε ; is-factor = aN=x (f ε ε) } + -- λ x y → record { factor = ? ; is-factor = ? } ) + _/_ : (A : Group c c ) (N : NormalSubGroup A ) → Group c c _/_ A N = record {