changeset 12:d960f2ea902f

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 17 Aug 2020 15:12:17 +0900
parents 9dae7ef74342
children e0d16960d10d
files Solvable.agda
diffstat 1 files changed, 39 insertions(+), 14 deletions(-) [+]
line wrap: on
line diff
--- a/Solvable.agda	Mon Aug 17 14:40:54 2020 +0900
+++ b/Solvable.agda	Mon Aug 17 15:12:17 2020 +0900
@@ -95,23 +95,48 @@
        mpf p (mpf q (mpf r ε))
     ∎ where open EqReasoning (Algebra.Group.setoid G)
 
+mpg : {x : Carrier } → (m : MP x ) → Carrier → Carrier
+mpg {x} (am x) y = y ∙ x
+mpg (m o m₁) y = mpf m₁ ( mpf m y )
+
+mp-flatten-g : {x : Carrier } → (m : MP x ) → Carrier 
+mp-flatten-g {x} m = mpg {x} m ε 
+  
+∙-flatten-g : {x : Carrier } → (m : MP x ) → x ≈ mp-flatten-g m
+∙-flatten-g {x} (am x) = gsym (proj₁ identity _)
+∙-flatten-g {_} (am x o q) = {!!} -- ∙-cong ( ∙-flatten-g q ) grefl
+∙-flatten-g (_o_ {_} {z} (_o_ {x} {y} p q) r) = lemma9 _ _ _ {!!} ( ∙-flatten-g {z} r ) where
+   mp-cong : {p q r : Carrier} → (P : MP p)  → q ≈ r → mpg P q ≈ mpg P r
+   mp-cong (am x) q=r = {!!} -- ∙-cong grefl q=r
+   mp-cong (P o P₁) q=r = {!!} -- mp-cong P ( mp-cong P₁ q=r )
+   mp-assoc : {p q r : Carrier} → (P : MP p)  → mpg P q ∙ r ≈ mpg P (q ∙ r )
+   mp-assoc (am x) = {!!} -- assoc _ _ _ 
+   mp-assoc {p} {q} {r} (P o P₁) = begin
+       {!!}      ≈⟨ {!!} ⟩
+       {!!}
+    ∎ where open EqReasoning (Algebra.Group.setoid G)
+   lemma9 : (x y z : Carrier) →  x ∙ y ≈ mpg p (mpg q ε) → z ≈ mpg r ε →  x ∙ y ∙ z ≈ mp-flatten-g ((p o q) o r)
+   lemma9 x y z t s = begin
+       {!!}                ≈⟨ {!!}  ⟩
+       {!!}
+    ∎ where open EqReasoning (Algebra.Group.setoid G)
+
+tet1 : (f g : Carrier ) → {!!}
+tet1 f g = mp-flatten-g ((am (g ⁻¹) o am (f ⁻¹) ) o ( (am f o am g) o am ((f ∙ g) ⁻¹ )))
+
+tet2 : (f g : Carrier ) → {!!}
+tet2 f g = mp-flatten ((am (g ⁻¹) o am (f ⁻¹) ) o ( (am f o am g) o am ((f ∙ g) ⁻¹ )))
 
 lemma5 : (f g : Carrier ) → g ⁻¹ ∙ f ⁻¹ ≈ (f ∙ g) ⁻¹
 lemma5 f g = begin
-     g ⁻¹ ∙ f ⁻¹                              ≈⟨ gsym (proj₂ identity _) ⟩
-     g ⁻¹ ∙ f ⁻¹  ∙ ε                         ≈⟨ gsym (∙-cong grefl (proj₂ inverse _ )) ⟩
-     g ⁻¹ ∙ f ⁻¹  ∙ ( (f ∙ g) ∙ (f ∙ g) ⁻¹ )  ≈⟨ assoc _ _ _ ⟩
-     g ⁻¹ ∙ (f ⁻¹ ∙ (f ∙ g ∙ (f ∙ g) ⁻¹))     ≈⟨ ∙-cong grefl (gsym (assoc _ _ _)) ⟩
-     g ⁻¹ ∙ (f ⁻¹ ∙ (f ∙ g) ∙ (f ∙ g) ⁻¹)     ≈⟨ gsym ( assoc _ _ _) ⟩
-     g ⁻¹ ∙ (f ⁻¹ ∙ (f ∙ g)) ∙ (f ∙ g) ⁻¹     ≈⟨ ∙-cong (gsym (assoc _ _ _ )) grefl ⟩
-     (g ⁻¹ ∙ f ⁻¹)  ∙ (f ∙ g) ∙ (f ∙ g) ⁻¹    ≈⟨ ∙-cong (assoc _ _ _ ) grefl ⟩
-     (g ⁻¹ ∙ (f ⁻¹  ∙ (f ∙ g))) ∙ (f ∙ g) ⁻¹  ≈⟨ ∙-cong (∙-cong grefl (gsym (assoc _ _ _ )) ) grefl ⟩
-     (g ⁻¹ ∙ ((f ⁻¹  ∙ f) ∙ g)) ∙ (f ∙ g) ⁻¹  ≈⟨ ∙-cong (gsym (assoc _ _ _ )) grefl ⟩
-     (g ⁻¹ ∙ (f ⁻¹  ∙ f) ∙ g)  ∙ (f ∙ g) ⁻¹   ≈⟨ ∙-cong (assoc _ _ _) grefl ⟩
-     g ⁻¹ ∙ ((f ⁻¹  ∙ f) ∙ g) ∙ (f ∙ g) ⁻¹    ≈⟨ ∙-cong (∙-cong grefl (∙-cong (proj₁ inverse _ ) grefl )) grefl ⟩
-     g ⁻¹ ∙ (ε  ∙ g) ∙ (f ∙ g) ⁻¹             ≈⟨ ∙-cong (∙-cong grefl ( proj₁ identity _) ) grefl ⟩
-     g ⁻¹ ∙ g ∙ (f ∙ g) ⁻¹                    ≈⟨ ∙-cong (proj₁ inverse _) grefl  ⟩
-     ε  ∙ (f ∙ g) ⁻¹                          ≈⟨ proj₁ identity _ ⟩
+     g ⁻¹ ∙ f ⁻¹                                     ≈⟨ gsym (proj₂ identity _) ⟩
+     g ⁻¹ ∙ f ⁻¹  ∙ ε                                ≈⟨ gsym (∙-cong grefl (proj₂ inverse _ )) ⟩
+     g ⁻¹ ∙ f ⁻¹  ∙ ( (f ∙ g) ∙ (f ∙ g) ⁻¹ )         ≈⟨ ∙-flatten ((am (g ⁻¹) o am (f ⁻¹) ) o ( (am f o am g) o am ((f ∙ g) ⁻¹ )))  ⟩
+     g ⁻¹ ∙ (f ⁻¹ ∙ (f ∙ (g ∙ ((f ∙ g) ⁻¹ ∙ ε))))    ≈⟨ ∙-cong grefl (gsym (assoc _ _ _ )) ⟩
+     g ⁻¹ ∙ ((f ⁻¹ ∙ f) ∙ (g ∙ ((f ∙ g) ⁻¹ ∙ ε)))    ≈⟨ ∙-cong grefl (gtrans (∙-cong (proj₁ inverse _ ) grefl) (proj₁ identity _)) ⟩
+     g ⁻¹ ∙ (g ∙ ((f ∙ g) ⁻¹ ∙ ε))                   ≈⟨ gsym (assoc _ _ _) ⟩
+     (g ⁻¹ ∙ g ) ∙ ((f ∙ g) ⁻¹ ∙ ε)                  ≈⟨ gtrans (∙-cong (proj₁ inverse _ ) grefl) (proj₁ identity _) ⟩
+     (f ∙ g) ⁻¹ ∙ ε                                  ≈⟨ proj₂ identity _ ⟩
      (f ∙ g) ⁻¹
      ∎ where open EqReasoning (Algebra.Group.setoid G)