Mercurial > hg > Members > kono > Proof > galois
changeset 327:f5b2145c174c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 23 Sep 2023 19:22:22 +0900 |
parents | e9ac54559597 |
children | e9de2bfef88d |
files | src/Putil.agda |
diffstat | 1 files changed, 8 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Putil.agda Sat Sep 23 19:12:26 2023 +0900 +++ b/src/Putil.agda Sat Sep 23 19:22:22 2023 +0900 @@ -294,22 +294,24 @@ ... | suc t = p012 where p003 : 0 < toℕ (Inverse.to perm zero) p003 = subst ( λ k → 0 < k ) (cong toℕ (sym eq)) (s≤s z≤n) + p008 : toℕ (Data.Fin.pred (Inverse.to perm zero)) ≡ toℕ (Inverse.to perm zero) ∸ 1 + p008 = ? p002 : toℕ (Inverse.to perm zero) ≤ suc n p002 = toℕ≤pred[n] (Inverse.to perm zero) p001 : suc (toℕ (Data.Fin.pred (Inverse.to perm zero))) ≤ suc n p001 = begin - suc (toℕ (Data.Fin.pred (Inverse.to perm zero))) ≡⟨ {!!} ⟩ + suc (toℕ (Data.Fin.pred (Inverse.to perm zero))) ≡⟨ cong suc p008 ⟩ suc (Data.Nat.pred (toℕ (Inverse.to perm zero))) ≡⟨ sucprd p003 ⟩ toℕ (Inverse.to perm zero) ≤⟨ p002 ⟩ suc n ∎ where open ≤-Reasoning - p007 : Data.Nat.pred (suc (toℕ (Inverse.to perm zero))) < suc n - p007 = ? + p007 : Data.Nat.pred (toℕ (Inverse.to perm zero)) < suc n + p007 = subst (λ k → k < suc n ) p008 ? p012 : Inverse.from perm (Inverse.to (pins (toℕ≤pred[n] (suc t))) zero) ≡ # 0 p012 = begin - Inverse.from perm (Inverse.to (pins (toℕ≤pred[n] (suc t))) zero) ≡⟨ ? ⟩ + Inverse.from perm (Inverse.to (pins (toℕ≤pred[n] (suc t))) zero) ≡⟨ cong (λ k → perm ∘ₚ flip (pins (toℕ≤pred[n] k)) ⟨$⟩ˡ # 0) (sym eq) ⟩ perm ∘ₚ flip (pins (toℕ≤pred[n] (perm ⟨$⟩ʳ # 0))) ⟨$⟩ˡ # 0 ≡⟨ p011 _ _ perm p001 (s≤s z≤n) ⟩ - perm ⟨$⟩ˡ suc (fromℕ< p001) ≡⟨ cong (λ k → perm ⟨$⟩ˡ k ) (lemma10 ?) ⟩ - perm ⟨$⟩ˡ suc (fromℕ< ?) ≡⟨ cong (λ k → perm ⟨$⟩ˡ k ) (pred-fin (Inverse.to perm zero) p003 ? ) ⟩ + perm ⟨$⟩ˡ suc (fromℕ< p001) ≡⟨ cong (λ k → perm ⟨$⟩ˡ k ) (lemma10 (cong suc p008)) ⟩ + perm ⟨$⟩ˡ suc (fromℕ< p007) ≡⟨ cong (λ k → perm ⟨$⟩ˡ k ) (pred-fin (Inverse.to perm zero) p003 p007 ) ⟩ perm ⟨$⟩ˡ (Inverse.to perm zero) ≡⟨ inverseˡ perm ⟩ # 0 ∎ where open ≡-Reasoning