Mercurial > hg > Members > ryokka > Haskell
changeset 0:59ea2399cb7a default tip
add RBTree.hs
author | ryokka |
---|---|
date | Thu, 14 Dec 2017 18:15:21 +0900 |
parents | |
children | |
files | RBTree.hs |
diffstat | 1 files changed, 613 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/RBTree.hs Thu Dec 14 18:15:21 2017 +0900 @@ -0,0 +1,613 @@ +{-| + Purely functional red-black trees. + + * Chris Okasaki, \"Red-Black Trees in a Functional Setting\", + Journal of Functional Programming, 9(4), pp 471-477, July 1999 + <http://www.eecs.usma.edu/webs/people/okasaki/pubs.html#jfp99> + + * Stefan Kahrs, \"Red-black trees with types\", + Journal of functional programming, 11(04), pp 425-432, July 2001 +-} + +module Data.Set.RBTree ( + -- * Data structures + RBTree(..) + , Color(..) + , BlackHeight + -- * Creating red-black trees + , empty + , singleton + , insert + , fromList + -- * Converting to a list + , toList + -- * Membership + , member + -- * Deleting + , delete + , deleteMin + , deleteMax + -- * Checking + , null + -- * Set operations + , union + , intersection + , difference + -- * Helper functions + , join + , merge + , split + , minimum + , maximum + , valid + , showSet + , printSet + ) where + +import Data.List (foldl') +import Prelude hiding (minimum, maximum, null) + +---------------------------------------------------------------- +-- Part to be shared +---------------------------------------------------------------- + +data RBTree a = Leaf -- color is Black + | Node Color !BlackHeight !(RBTree a) a !(RBTree a) + deriving (Show) + +data Color = B -- ^ Black + | R -- ^ Red + deriving (Eq,Show) + +{-| + Red nodes have the same BlackHeight of their parent. +-} +type BlackHeight = Int + +---------------------------------------------------------------- + +instance (Eq a) => Eq (RBTree a) where + t1 == t2 = toList t1 == toList t2 + +---------------------------------------------------------------- + +height :: RBTree a -> BlackHeight +height Leaf = 0 +height (Node _ h _ _ _) = h + +---------------------------------------------------------------- + +{-| +See if the red black tree is empty. + +>>> Data.Set.RBTree.null empty +True +>>> Data.Set.RBTree.null (singleton 1) +False +-} + +null :: Eq a => RBTree a -> Bool +null t = t == Leaf + +---------------------------------------------------------------- + +{-| Empty tree. + +>>> height empty +0 +-} + +empty :: RBTree a +empty = Leaf + +{-| Singleton tree. + +>>> height (singleton 'a') +1 +-} + +singleton :: Ord a => a -> RBTree a +singleton x = Node B 1 Leaf x Leaf + +---------------------------------------------------------------- + +{-| Creating a tree from a list. O(N log N) + +>>> empty == fromList [] +True +>>> singleton 'a' == fromList ['a'] +True +>>> fromList [5,3,5] == fromList [5,3] +True +-} + +fromList :: Ord a => [a] -> RBTree a +fromList = foldl' (flip insert) empty + +---------------------------------------------------------------- + +{-| Creating a list from a tree. O(N) + +>>> toList (fromList [5,3]) +[3,5] +>>> toList empty +[] +-} + +toList :: RBTree a -> [a] +toList t = inorder t [] + where + inorder Leaf xs = xs + inorder (Node _ _ l x r) xs = inorder l (x : inorder r xs) + +---------------------------------------------------------------- + +{-| Checking if this element is a member of a tree? + +>>> member 5 (fromList [5,3]) +True +>>> member 1 (fromList [5,3]) +False +-} + +member :: Ord a => a -> RBTree a -> Bool +member _ Leaf = False +member x (Node _ _ l y r) = case compare x y of + LT -> member x l + GT -> member x r + EQ -> True + +---------------------------------------------------------------- + +isBalanced :: RBTree a -> Bool +isBalanced t = isBlackSame t && isRedSeparate t + +isBlackSame :: RBTree a -> Bool +isBlackSame t = all (n==) ns + where + n:ns = blacks t + +blacks :: RBTree a -> [Int] +blacks = blacks' 0 + where + blacks' n Leaf = [n+1] + blacks' n (Node R _ l _ r) = blacks' n l ++ blacks' n r + blacks' n (Node B _ l _ r) = blacks' n' l ++ blacks' n' r + where + n' = n + 1 + +isRedSeparate :: RBTree a -> Bool +isRedSeparate = reds B + +reds :: Color -> RBTree t -> Bool +reds _ Leaf = True +reds R (Node R _ _ _ _) = False +reds _ (Node c _ l _ r) = reds c l && reds c r + +isOrdered :: Ord a => RBTree a -> Bool +isOrdered t = ordered $ toList t + where + ordered [] = True + ordered [_] = True + ordered (x:y:xys) = x < y && ordered (y:xys) + +blackHeight :: RBTree a -> Bool +blackHeight Leaf = True +blackHeight t@(Node B i _ _ _) = bh i t + where + bh n Leaf = n == 0 + bh n (Node R h l _ r) = n == h' && bh n l && bh n r + where + h' = h - 1 + bh n (Node B h l _ r) = n == h && bh n' l && bh n' r + where + n' = n - 1 +blackHeight _ = error "blackHeight" + +---------------------------------------------------------------- + +turnR :: RBTree a -> RBTree a +turnR Leaf = error "turnR" +turnR (Node _ h l x r) = Node R h l x r + +turnB :: RBTree a -> RBTree a +turnB Leaf = error "turnB" +turnB (Node _ h l x r) = Node B h l x r + +turnB' :: RBTree a -> RBTree a +turnB' Leaf = Leaf +turnB' (Node _ h l x r) = Node B h l x r + +---------------------------------------------------------------- + +{-| Finding the minimum element. O(log N) + +>>> minimum (fromList [3,5,1]) +1 +>>> minimum empty +*** Exception: minimum +-} + +minimum :: RBTree a -> a +minimum (Node _ _ Leaf x _) = x +minimum (Node _ _ l _ _) = minimum l +minimum _ = error "minimum" + +{-| Finding the maximum element. O(log N) + +>>> maximum (fromList [3,5,1]) +5 +>>> maximum empty +*** Exception: maximum +-} + +maximum :: RBTree a -> a +maximum (Node _ _ _ x Leaf) = x +maximum (Node _ _ _ _ r) = maximum r +maximum _ = error "maximum" + +---------------------------------------------------------------- + +showSet :: Show a => RBTree a -> String +showSet = showSet' "" + +showSet' :: Show a => String -> RBTree a -> String +showSet' _ Leaf = "\n" +showSet' pref (Node k h l x r) = show k ++ " " ++ show x ++ " (" ++ show h ++ ")\n" + ++ pref ++ "+ " ++ showSet' pref' l + ++ pref ++ "+ " ++ showSet' pref' r + where + pref' = " " ++ pref + +printSet :: Show a => RBTree a -> IO () +printSet = putStr . showSet + +---------------------------------------------------------------- + +isRed :: RBTree a -> Bool +isRed (Node R _ _ _ _ ) = True +isRed _ = False + +---------------------------------------------------------------- +-- Basic operations +---------------------------------------------------------------- + +{-| Checking validity of a tree. +-} + +valid :: Ord a => RBTree a -> Bool +valid t = isBalanced t && blackHeight t && isOrdered t + +---------------------------------------------------------------- +-- Chris Okasaki +-- + +{-| Insertion. O(log N) + +>>> insert 5 (fromList [5,3]) == fromList [3,5] +True +>>> insert 7 (fromList [5,3]) == fromList [3,5,7] +True +>>> insert 5 empty == singleton 5 +True +-} + +insert :: Ord a => a -> RBTree a -> RBTree a +insert kx t = turnB (insert' kx t) + +insert' :: Ord a => a -> RBTree a -> RBTree a +insert' kx Leaf = Node R 1 Leaf kx Leaf +insert' kx s@(Node B h l x r) = case compare kx x of + LT -> balanceL' h (insert' kx l) x r + GT -> balanceR' h l x (insert' kx r) + EQ -> s +insert' kx s@(Node R h l x r) = case compare kx x of + LT -> Node R h (insert' kx l) x r + GT -> Node R h l x (insert' kx r) + EQ -> s + +balanceL' :: BlackHeight -> RBTree a -> a -> RBTree a -> RBTree a +balanceL' h (Node R _ (Node R _ a x b) y c) z d = + Node R (h+1) (Node B h a x b) y (Node B h c z d) +balanceL' h (Node R _ a x (Node R _ b y c)) z d = + Node R (h+1) (Node B h a x b) y (Node B h c z d) +balanceL' h l x r = Node B h l x r + +balanceR' :: BlackHeight -> RBTree a -> a -> RBTree a -> RBTree a +balanceR' h a x (Node R _ b y (Node R _ c z d)) = + Node R (h+1) (Node B h a x b) y (Node B h c z d) +balanceR' h a x (Node R _ (Node R _ b y c) z d) = + Node R (h+1) (Node B h a x b) y (Node B h c z d) +balanceR' h l x r = Node B h l x r + +---------------------------------------------------------------- + +balanceL :: Color -> BlackHeight -> RBTree a -> a -> RBTree a -> RBTree a +balanceL B h (Node R _ (Node R _ a x b) y c) z d = + Node R (h+1) (Node B h a x b) y (Node B h c z d) +balanceL B h (Node R _ a x (Node R _ b y c)) z d = + Node R (h+1) (Node B h a x b) y (Node B h c z d) +balanceL k h l x r = Node k h l x r + +balanceR :: Color -> BlackHeight -> RBTree a -> a -> RBTree a -> RBTree a +balanceR B h a x (Node R _ b y (Node R _ c z d)) = + Node R (h+1) (Node B h a x b) y (Node B h c z d) +balanceR B h a x (Node R _ (Node R _ b y c) z d) = + Node R (h+1) (Node B h a x b) y (Node B h c z d) +balanceR k h l x r = Node k h l x r + +---------------------------------------------------------------- + +type RBTreeBDel a = (RBTree a, Bool) + +unbalancedL :: Color -> BlackHeight -> RBTree a -> a -> RBTree a -> RBTreeBDel a +unbalancedL c h l@(Node B _ _ _ _) x r + = (balanceL B h (turnR l) x r, c == B) +unbalancedL B h (Node R lh ll lx lr@(Node B _ _ _ _)) x r + = (Node B lh ll lx (balanceL B h (turnR lr) x r), False) +unbalancedL _ _ _ _ _ = error "unbalancedL" + +-- The left tree lacks one Black node +unbalancedR :: Color -> BlackHeight -> RBTree a -> a -> RBTree a -> (RBTree a, Bool) +-- Decreasing one Black node in the right +unbalancedR c h l x r@(Node B _ _ _ _) + = (balanceR B h l x (turnR r), c == B) +-- Taking one Red node from the right and adding it to the right as Black +unbalancedR B h l x (Node R rh rl@(Node B _ _ _ _) rx rr) + = (Node B rh (balanceR B h l x (turnR rl)) rx rr, False) +unbalancedR _ _ _ _ _ = error "unbalancedR" + +---------------------------------------------------------------- + +{-| Deleting the minimum element. O(log N) + +>>> deleteMin (fromList [5,3,7]) == fromList [5,7] +True +>>> deleteMin empty == empty +True +-} + +deleteMin :: RBTree a -> RBTree a +deleteMin Leaf = empty +deleteMin t = turnB' s + where + ((s, _), _) = deleteMin' t + +deleteMin' :: RBTree a -> (RBTreeBDel a, a) +deleteMin' Leaf = error "deleteMin'" +deleteMin' (Node B _ Leaf x Leaf) = ((Leaf, True), x) +deleteMin' (Node B _ Leaf x r@(Node R _ _ _ _)) = ((turnB r, False), x) +deleteMin' (Node R _ Leaf x r) = ((r, False), x) +deleteMin' (Node c h l x r) = if d then (tD, m) else (tD', m) + where + ((l',d),m) = deleteMin' l + tD = unbalancedR c (h-1) l' x r + tD' = (Node c h l' x r, False) + +---------------------------------------------------------------- + +{-| Deleting the maximum + +>>> deleteMax (fromList [(5,"a"), (3,"b"), (7,"c")]) == fromList [(3,"b"), (5,"a")] +True +>>> deleteMax empty == empty +True +-} + +deleteMax :: RBTree a -> RBTree a +deleteMax Leaf = empty +deleteMax t = turnB' s + where + ((s, _), _) = deleteMax' t + +deleteMax' :: RBTree a -> (RBTreeBDel a, a) +deleteMax' Leaf = error "deleteMax'" +deleteMax' (Node B _ Leaf x Leaf) = ((Leaf, True), x) +deleteMax' (Node B _ l@(Node R _ _ _ _) x Leaf) = ((turnB l, False), x) +deleteMax' (Node R _ l x Leaf) = ((l, False), x) +deleteMax' (Node c h l x r) = if d then (tD, m) else (tD', m) + where + ((r',d),m) = deleteMax' r + tD = unbalancedL c (h-1) l x r' + tD' = (Node c h l x r', False) + +---------------------------------------------------------------- + +blackify :: RBTree a -> RBTreeBDel a +blackify s@(Node R _ _ _ _) = (turnB s, False) +blackify s = (s, True) + +{-| Deleting this element from a tree. O(log N) + +>>> delete 5 (fromList [5,3]) == singleton 3 +True +>>> delete 7 (fromList [5,3]) == fromList [3,5] +True +>>> delete 5 empty == empty +True +-} + +delete :: Ord a => a -> RBTree a -> RBTree a +delete x t = turnB' s + where + (s,_) = delete' x t + +delete' :: Ord a => a -> RBTree a -> RBTreeBDel a +delete' _ Leaf = (Leaf, False) +delete' x (Node c h l y r) = case compare x y of + LT -> let (l',d) = delete' x l + t = Node c h l' y r + in if d then unbalancedR c (h-1) l' y r else (t, False) + GT -> let (r',d) = delete' x r + t = Node c h l y r' + in if d then unbalancedL c (h-1) l y r' else (t, False) + EQ -> case r of + Leaf -> if c == B then blackify l else (l, False) + _ -> let ((r',d),m) = deleteMin' r + t = Node c h l m r' + in if d then unbalancedL c (h-1) l m r' else (t, False) + +---------------------------------------------------------------- +-- Set operations +---------------------------------------------------------------- + +{-| Joining two trees with an element. O(log N) + + Each element of the left tree must be less than the element. + Each element of the right tree must be greater than the element. + Both tree must have black root. +-} + +join :: Ord a => RBTree a -> a -> RBTree a -> RBTree a +join Leaf g t2 = insert g t2 +join t1 g Leaf = insert g t1 +join t1 g t2 = case compare h1 h2 of + LT -> turnB $ joinLT t1 g t2 h1 + GT -> turnB $ joinGT t1 g t2 h2 + EQ -> Node B (h1+1) t1 g t2 + where + h1 = height t1 + h2 = height t2 + +-- The root of result must be red. +joinLT :: Ord a => RBTree a -> a -> RBTree a -> BlackHeight -> RBTree a +joinLT t1 g t2@(Node c h l x r) h1 + | h == h1 = Node R (h+1) t1 g t2 + | otherwise = balanceL c h (joinLT t1 g l h1) x r +joinLT _ _ _ _ = error "joinLT" + +-- The root of result must be red. +joinGT :: Ord a => RBTree a -> a -> RBTree a -> BlackHeight -> RBTree a +joinGT t1@(Node c h l x r) g t2 h2 + | h == h2 = Node R (h+1) t1 g t2 + | otherwise = balanceR c h l x (joinGT r g t2 h2) +joinGT _ _ _ _ = error "joinGT" + +---------------------------------------------------------------- + +{-| Merging two trees. O(log N) + + Each element of the left tree must be less than each element of + the right tree. Both trees must have black root. +-} + +merge :: Ord a => RBTree a -> RBTree a -> RBTree a +merge Leaf t2 = t2 +merge t1 Leaf = t1 +merge t1 t2 = case compare h1 h2 of + LT -> turnB $ mergeLT t1 t2 h1 + GT -> turnB $ mergeGT t1 t2 h2 + EQ -> turnB $ mergeEQ t1 t2 + where + h1 = height t1 + h2 = height t2 + +mergeLT :: Ord a => RBTree a -> RBTree a -> BlackHeight -> RBTree a +mergeLT t1 t2@(Node c h l x r) h1 + | h == h1 = mergeEQ t1 t2 + | otherwise = balanceL c h (mergeLT t1 l h1) x r +mergeLT _ _ _ = error "mergeLT" + +mergeGT :: Ord a => RBTree a -> RBTree a -> BlackHeight -> RBTree a +mergeGT t1@(Node c h l x r) t2 h2 + | h == h2 = mergeEQ t1 t2 + | otherwise = balanceR c h l x (mergeGT r t2 h2) +mergeGT _ _ _ = error "mergeGT" + +{- + Merging two trees whose heights are the same. + The root must be either + a red with height + 1 + for + a black with height +-} + +mergeEQ :: Ord a => RBTree a -> RBTree a -> RBTree a +mergeEQ Leaf Leaf = Leaf +mergeEQ t1@(Node _ h l x r) t2 + | h == h2' = Node R (h+1) t1 m t2' + | isRed l = Node R (h+1) (turnB l) x (Node B h r m t2') + -- unnecessary for LL + | isRed r = Node B h (Node R h l x rl) rx (Node R h rr m t2') + | otherwise = Node B h (turnR t1) m t2' + where + m = minimum t2 + t2' = deleteMin t2 + h2' = height t2' + Node R _ rl rx rr = r +mergeEQ _ _ = error "mergeEQ" + +---------------------------------------------------------------- + +{-| Splitting a tree. O(log N) + +>>> split 2 (fromList [5,3]) == (empty, fromList [3,5]) +True +>>> split 3 (fromList [5,3]) == (empty, singleton 5) +True +>>> split 4 (fromList [5,3]) == (singleton 3, singleton 5) +True +>>> split 5 (fromList [5,3]) == (singleton 3, empty) +True +>>> split 6 (fromList [5,3]) == (fromList [3,5], empty) +True +-} + +split :: Ord a => a -> RBTree a -> (RBTree a, RBTree a) +split _ Leaf = (Leaf,Leaf) +split kx (Node _ _ l x r) = case compare kx x of + LT -> (lt, join gt x (turnB' r)) where (lt,gt) = split kx l + GT -> (join (turnB' l) x lt, gt) where (lt,gt) = split kx r + EQ -> (turnB' l, turnB' r) + +{- LL +split :: Ord a => a -> RBTree a -> (RBTree a, RBTree a) +split _ Leaf = (Leaf,Leaf) +split kx (Node _ _ l x r) = case compare kx x of + LT -> (lt, join gt x r) where (lt,gt) = split kx l + GT -> (join l x lt, gt) where (lt,gt) = split kx r + EQ -> (turnB' l, r) +-} + +---------------------------------------------------------------- + +{-| Creating a union tree from two trees. O(N + M) + +>>> union (fromList [5,3]) (fromList [5,7]) == fromList [3,5,7] +True +-} + +union :: Ord a => RBTree a -> RBTree a -> RBTree a +union t1 Leaf = t1 -- ensured Black thanks to split +union Leaf t2 = turnB' t2 +union t1 (Node _ _ l x r) = join (union l' l) x (union r' r) + where + (l',r') = split x t1 + +{-| Creating a intersection tree from trees. O(N + N) + +>>> intersection (fromList [5,3]) (fromList [5,7]) == singleton 5 +True +-} + +intersection :: Ord a => RBTree a -> RBTree a -> RBTree a +intersection Leaf _ = Leaf +intersection _ Leaf = Leaf +intersection t1 (Node _ _ l x r) + | member x t1 = join (intersection l' l) x (intersection r' r) + | otherwise = merge (intersection l' l) (intersection r' r) + where + (l',r') = split x t1 + +{-| Creating a difference tree from trees. O(N + N) + +>>> difference (fromList [5,3]) (fromList [5,7]) == singleton 3 +True +-} + +difference :: Ord a => RBTree a -> RBTree a -> RBTree a +difference Leaf _ = Leaf +difference t1 Leaf = t1 -- ensured Black thanks to split +difference t1 (Node _ _ l x r) = merge (difference l' l) (difference r' r) + where + (l',r') = split x t1