Mercurial > hg > Members > ryokka > HoareLogic
comparison whileTestGears.agda @ 44:5a3c9d087c7c
dead end
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 15 Dec 2019 15:57:07 +0900 |
parents | 8813f26da3b7 |
children |
comparison
equal
deleted
inserted
replaced
42:8813f26da3b7 | 44:5a3c9d087c7c |
---|---|
8 open import Relation.Binary.PropositionalEquality | 8 open import Relation.Binary.PropositionalEquality |
9 | 9 |
10 open import utilities | 10 open import utilities |
11 open _/\_ | 11 open _/\_ |
12 | 12 |
13 record Env : Set (succ Zero) where | 13 record Env (Cxt : Set) : Set (succ Zero) where |
14 field | 14 field |
15 varn : ℕ | 15 varn : ℕ |
16 vari : ℕ | 16 vari : ℕ |
17 cx : Set | 17 cx : Cxt |
18 open Env | 18 open Env |
19 | 19 |
20 whileTest : {l : Level} {t : Set l} (c : Set ) → (c10 : ℕ) → (Code : Env → t) → t | 20 whileTest : {l : Level} {t : Set l} {Cxt : Set} (c : Cxt ) → (c10 : ℕ) → (Code : Env Cxt → t) → t |
21 whileTest c c10 next = next (record {varn = c10 ; vari = 0 ; cx = c} ) | 21 whileTest c c10 next = next (record {varn = c10 ; vari = 0 ; cx = c } ) |
22 | 22 |
23 {-# TERMINATING #-} | 23 {-# TERMINATING #-} |
24 whileLoop : {l : Level} {t : Set l} → Env → (Code : Env → t) → t | 24 whileLoop : {l : Level} {t : Set l} {Cxt : Set} {c : Cxt } → Env Cxt → (Code : Env Cxt → t) → t |
25 whileLoop env next with lt 0 (varn env) | 25 whileLoop env next with lt 0 (varn env) |
26 whileLoop env next | false = next env | 26 whileLoop env next | false = next env |
27 whileLoop env next | true = | 27 whileLoop env next | true = |
28 whileLoop (record env {varn = (varn env) - 1 ; vari = (vari env) + 1}) next | 28 whileLoop (record env {varn = (varn env) - 1 ; vari = (vari env) + 1}) next |
29 | 29 |
30 test1 : (c : Set ) → Env | 30 test1 : {Cxt : Set } → (c : Cxt) → Env Cxt |
31 test1 c = whileTest c 10 (λ env → whileLoop env (λ env1 → env1 )) | 31 test1 c = whileTest c 10 (λ env → whileLoop env (λ env1 → env1 )) |
32 | 32 |
33 | 33 |
34 proof1 : (c : Set ) → whileTest c 10 (λ env → whileLoop env (λ e → (vari e) ≡ 10 )) | 34 proof1 : {Cxt : Set } (c : Cxt ) → whileTest c 10 (λ env → whileLoop env (λ e → (vari e) ≡ 10 )) |
35 proof1 c = refl | 35 proof1 c = refl |
36 | 36 |
37 -- ↓PostCondition | 37 -- ↓PostCondition |
38 whileTest' : {l : Level} {t : Set l} → {c : Set} → {c10 : ℕ } → (Code : (env : Env ) → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) → t) → t | 38 whileTest' : {l : Level} {t : Set l} {Cxt : Set} → {c : Cxt} → {c10 : ℕ } → (Code : (env : Env Cxt ) → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) → t) → t |
39 whileTest' {_} {_} {c} {c10} next = next env proof2 | 39 whileTest' {_} {_} {Cxt} {c} {c10} next = next env proof2 |
40 where | 40 where |
41 env : Env | 41 env : Env Cxt |
42 env = record {vari = 0 ; varn = c10 ; cx = c } | 42 env = record {vari = 0 ; varn = c10 ; cx = c } |
43 proof2 : ((vari env) ≡ 0) /\ ((varn env) ≡ c10) -- PostCondition | 43 proof2 : ((vari env) ≡ 0) /\ ((varn env) ≡ c10) -- PostCondition |
44 proof2 = record {pi1 = refl ; pi2 = refl} | 44 proof2 = record {pi1 = refl ; pi2 = refl} |
45 | 45 |
46 open import Data.Empty | 46 open import Data.Empty |
47 open import Data.Nat.Properties | 47 open import Data.Nat.Properties |
48 | 48 |
49 | 49 |
50 {-# TERMINATING #-} -- ↓PreCondition(Invaliant) | 50 {-# TERMINATING #-} -- ↓PreCondition(Invaliant) |
51 whileLoop' : {l : Level} {t : Set l} → (env : Env ) → {c10 : ℕ } → ((varn env) + (vari env) ≡ c10) → (Code : Env → t) → t | 51 whileLoop' : {l : Level} {t : Set l} {Cxt : Set} {c : Cxt } → (env : Env Cxt ) → {c10 : ℕ } → ((varn env) + (vari env) ≡ c10) → (Code : Env Cxt → t) → t |
52 whileLoop' env proof next with ( suc zero ≤? (varn env) ) | 52 whileLoop' env proof next with ( suc zero ≤? (varn env) ) |
53 whileLoop' env proof next | no p = next env | 53 whileLoop' env proof next | no p = next env |
54 whileLoop' env {c10} proof next | yes p = whileLoop' env1 (proof3 p ) next | 54 whileLoop' env {c10} proof next | yes p = whileLoop' env1 (proof3 p ) next |
55 where | 55 where |
56 env1 = record env {varn = (varn env) - 1 ; vari = (vari env) + 1} | 56 env1 = record env {varn = (varn env) - 1 ; vari = (vari env) + 1} |
74 -- ≡⟨ proof ⟩ | 74 -- ≡⟨ proof ⟩ |
75 -- c10 | 75 -- c10 |
76 -- ∎ | 76 -- ∎ |
77 | 77 |
78 -- Condition to Invaliant | 78 -- Condition to Invaliant |
79 conversion1 : {l : Level} {t : Set l } → (env : Env ) → {c10 : ℕ } → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) | 79 conversion1 : {l : Level} {t : Set l } {Cxt : Set} {c : Cxt } → (env : Env Cxt ) → {c10 : ℕ } → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) |
80 → (Code : (env1 : Env ) → (varn env1 + vari env1 ≡ c10) → t) → t | 80 → (Code : (env1 : Env Cxt ) → (varn env1 + vari env1 ≡ c10) → t) → t |
81 conversion1 env {c10} p1 next = next env proof4 | 81 conversion1 env {c10} p1 next = next env proof4 |
82 where | 82 where |
83 proof4 : varn env + vari env ≡ c10 | 83 proof4 : varn env + vari env ≡ c10 |
84 proof4 = let open ≡-Reasoning in | 84 proof4 = let open ≡-Reasoning in |
85 begin | 85 begin |
91 ≡⟨ +-sym {c10} {0} ⟩ | 91 ≡⟨ +-sym {c10} {0} ⟩ |
92 c10 | 92 c10 |
93 ∎ | 93 ∎ |
94 | 94 |
95 | 95 |
96 proofGears : {c10 : ℕ } → Set → Set | 96 proofGears : {c10 : ℕ } → { Cxt : Set } → (c : Cxt ) → Set |
97 proofGears {c10} c = whileTest' {_} {_} {c} {c10} (λ n p1 → conversion1 n p1 (λ n1 p2 → whileLoop' n1 p2 (λ n2 → ( vari n2 ≡ c10 )))) | 97 proofGears {c10} c = whileTest' {_} {_} {_} {c} {c10} (λ n p1 → conversion1 n p1 (λ n1 p2 → whileLoop' n1 p2 (λ n2 → ( vari n2 ≡ c10 )))) |
98 | 98 |
99 data whileTestState (c10 : ℕ ) (env : Env ) : Set where | 99 record Context (e : Set ) : Set (succ Zero) |
100 | |
101 data whileTestState {Cxt : Set } (c10 : ℕ ) (env : Env Cxt ) : Set where | |
100 error : whileTestState c10 env | 102 error : whileTestState c10 env |
101 state1 : ((vari env) ≡ 0) /\ ((varn env) ≡ c10) → whileTestState c10 env | 103 state1 : ((vari env) ≡ 0) /\ ((varn env) ≡ c10) → whileTestState c10 env |
102 state2 : (varn env + vari env ≡ c10) → whileTestState c10 env | 104 state2 : (varn env + vari env ≡ c10) → whileTestState c10 env |
103 finstate : ((vari env) ≡ c10 ) → whileTestState c10 env | 105 finstate : ((vari env) ≡ c10 ) → whileTestState c10 env |
104 | 106 |
105 -- | 107 -- |
106 -- openended Env c <=> Context | 108 -- openended Env Cxt c <=> Context |
107 -- | 109 -- |
108 | 110 |
109 record Context : Set (succ Zero) where | 111 record Context e where |
110 field | 112 field |
111 c10 : ℕ | 113 c10 : ℕ |
112 whileDG : Env | 114 whileDG : Env e |
113 whileCond : whileTestState c10 whileDG | 115 whileCond : whileTestState c10 whileDG |
114 | 116 |
115 open Context | 117 open Context |
116 | 118 |
117 open import Relation.Nullary | 119 open import Relation.Nullary |
119 | 121 |
120 -- | 122 -- |
121 -- transparency of condition | 123 -- transparency of condition |
122 -- | 124 -- |
123 | 125 |
124 whileCondP : Env → Set | 126 whileCondP : Env {!!} → Set |
125 whileCondP env = varn env > 0 | 127 whileCondP env = varn env > 0 |
126 | 128 |
127 whileDec : (cxt : Context) → Dec (whileCondP (whileDG cxt)) | 129 whileDec : (cxt : Context) → Dec (whileCondP (whileDG cxt)) |
128 whileDec cxt = {!!} | 130 whileDec cxt = {!!} |
129 | 131 |
139 where | 141 where |
140 proof : (cxt : Context) → (varn (whileDG cxt) - 1) + (vari (whileDG cxt) + 1) ≡ c10 cxt | 142 proof : (cxt : Context) → (varn (whileDG cxt) - 1) + (vari (whileDG cxt) + 1) ≡ c10 cxt |
141 proof cxt = {!!} | 143 proof cxt = {!!} |
142 | 144 |
143 {-# TERMINATING #-} | 145 {-# TERMINATING #-} |
144 whileLoopStep : {l : Level} {t : Set l} → Env → (next : (e : Env ) → t) (exit : (e : Env) → t) → t | 146 whileLoopStep : {l : Level} {t : Set l} → Env {!!} → (next : (e : Env {!!} ) → t) (exit : (e : Env {!!} ) → t) → t |
145 whileLoopStep env next exit with <-cmp 0 (varn env) | 147 whileLoopStep env next exit with <-cmp 0 (varn env) |
146 whileLoopStep env next exit | tri≈ _ eq _ = exit env | 148 whileLoopStep env next exit | tri≈ _ eq _ = exit env |
147 whileLoopStep env next exit | tri< gt ¬eq _ = next record env {varn = (varn env) - 1 ; vari = (vari env) + 1} | 149 whileLoopStep env next exit | tri< gt ¬eq _ = next record env {varn = (varn env) - 1 ; vari = (vari env) + 1} |
148 whileLoopStep env next exit | tri> _ _ c = ⊥-elim (m<n⇒n≢0 {varn env} {0} c refl) | 150 whileLoopStep env next exit | tri> _ _ c = ⊥-elim (m<n⇒n≢0 {varn env} {0} c refl) |
149 | 151 |
150 whileTestProof : {l : Level} {t : Set l} → Context → (Code : (cxt : Context ) → ¬ (vari (whileDG cxt) ≡ varn (whileDG cxt) ) → t) → t | 152 whileTestProof : {l : Level} {t : Set l} → Context → (Code : (cxt : Context ) → ¬ (vari (whileDG cxt) ≡ varn (whileDG cxt) ) → t) → t |
151 whileTestProof cxt next = next record cxt { whileDG = out ; whileCond = init } i!=n where | 153 whileTestProof cxt next = next record cxt { whileDG = out ; whileCond = init } i!=n where |
152 out : Env | 154 out : Env {!!} |
153 out = whileTest {!!} (c10 cxt) ( λ e → e ) | 155 out = whileTest {!!} (c10 cxt) ( λ e → e ) |
154 init : whileTestState (c10 cxt) out | 156 init : whileTestState (c10 cxt) out |
155 init = state1 record { pi1 = refl ; pi2 = refl } | 157 init = state1 record { pi1 = refl ; pi2 = refl } |
156 i!=n : ¬ vari out ≡ varn out | 158 i!=n : ¬ vari out ≡ varn out |
157 i!=n eq = {!!} | 159 i!=n eq = {!!} |
160 whileLoopProof : {l : Level} {t : Set l} → (cxt : Context ) → whileCondP (whileDG cxt) | 162 whileLoopProof : {l : Level} {t : Set l} → (cxt : Context ) → whileCondP (whileDG cxt) |
161 → (continue : (cxt : Context ) → whileCondP (whileDG cxt) → t) (exit : Context → ¬ whileCondP (whileDG cxt) → t) → t | 163 → (continue : (cxt : Context ) → whileCondP (whileDG cxt) → t) (exit : Context → ¬ whileCondP (whileDG cxt) → t) → t |
162 whileLoopProof cxt i!=n next exit = whileLoopStep (whileDG cxt) | 164 whileLoopProof cxt i!=n next exit = whileLoopStep (whileDG cxt) |
163 ( λ env → next record cxt { whileDG = env ; whileCond = {!!} } {!!} ) | 165 ( λ env → next record cxt { whileDG = env ; whileCond = {!!} } {!!} ) |
164 ( λ env → exit record cxt { whileDG = env ; whileCond = exitCond env {!!} } {!!} ) where | 166 ( λ env → exit record cxt { whileDG = env ; whileCond = exitCond env {!!} } {!!} ) where |
165 proof5 : (e : Env ) → varn e + vari e ≡ c10 cxt → 0 ≡ varn e → vari e ≡ c10 cxt | 167 proof5 : (e : Env {!!} ) → varn e + vari e ≡ c10 cxt → 0 ≡ varn e → vari e ≡ c10 cxt |
166 proof5 record { varn = .0 ; vari = vari } refl refl = refl | 168 proof5 record { varn = .0 ; vari = vari } refl refl = refl |
167 exitCond : (e : Env ) → 0 ≡ varn e → whileTestState (c10 cxt) e | 169 exitCond : (e : Env {!!} ) → 0 ≡ varn e → whileTestState (c10 cxt) e |
168 exitCond nenv eq1 with whileCond cxt | inspect whileDG cxt | 170 exitCond nenv eq1 with whileCond cxt | inspect whileDG cxt |
169 ... | state2 cond | record { eq = eq2 } = finstate ( proof5 nenv {!!} eq1 ) | 171 ... | state2 cond | record { eq = eq2 } = finstate ( proof5 nenv {!!} eq1 ) |
170 ... | _ | _ = error | 172 ... | _ | _ = error |
171 | 173 |
172 whileConvProof : {l : Level} {t : Set l} → (cxt : Context ) → ¬ (vari (whileDG cxt) ≡ varn (whileDG cxt)) | 174 whileConvProof : {l : Level} {t : Set l} → (cxt : Context ) → ¬ (vari (whileDG cxt) ≡ varn (whileDG cxt)) |
173 → ((cxt : Context ) → ¬ (vari (whileDG cxt) ≡ varn (whileDG cxt)) → t) → t | 175 → ((cxt : Context ) → ¬ (vari (whileDG cxt) ≡ varn (whileDG cxt)) → t) → t |
174 whileConvProof cxt i!=n next = next record cxt { whileCond = postCond } i!=n where | 176 whileConvProof cxt i!=n next = next record cxt { whileCond = postCond } i!=n where |
175 proof4 : (e : Env ) → (vari e ≡ 0) /\ (varn e ≡ c10 cxt) → varn e + vari e ≡ c10 cxt | 177 proof4 : (e : Env {!!} ) → (vari e ≡ 0) /\ (varn e ≡ c10 cxt) → varn e + vari e ≡ c10 cxt |
176 proof4 env p1 = let open ≡-Reasoning in | 178 proof4 env p1 = let open ≡-Reasoning in |
177 begin | 179 begin |
178 varn env + vari env | 180 varn env + vari env |
179 ≡⟨ cong ( λ n → n + vari env ) (pi2 p1 ) ⟩ | 181 ≡⟨ cong ( λ n → n + vari env ) (pi2 p1 ) ⟩ |
180 c10 cxt + vari env | 182 c10 cxt + vari env |