Mercurial > hg > Members > ryokka > HoareLogic
view whileTestGears.agda @ 98:2d2b0b06945b default tip
simplfied version
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 08 Apr 2023 17:00:53 +0900 |
parents | 1b2d58c5d75b |
children |
line wrap: on
line source
module whileTestGears where open import Function open import Data.Nat renaming ( _∸_ to _-_) open import Data.Bool hiding ( _≟_ ; _≤?_ ; _≤_ ; _<_ ) open import Level renaming ( suc to succ ; zero to Zero ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Binary.PropositionalEquality open import utilities open _/\_ record Env : Set where field varn : ℕ vari : ℕ open Env whileTestS : { m : Level} → (c10 : ℕ) → (Code : Env → Set m) → Set m whileTestS c10 next = next (record {varn = c10 ; vari = 0} ) whileTestS1 : (c10 : ℕ) → whileTestS c10 (λ e → ((varn e ≡ c10) /\ (vari e ≡ 0 )) ) whileTestS1 c10 = record { pi1 = refl ; pi2 = refl } whileTest : {l : Level} {t : Set l} → (c10 : ℕ) → (Code : Env → t) → t whileTest c10 next = next (record {varn = c10 ; vari = 0} ) {-# TERMINATING #-} whileLoop : {l : Level} {t : Set l} → Env → (Code : Env → t) → t whileLoop env next with lt 0 (varn env) whileLoop env next | false = next env whileLoop env next | true = whileLoop (record {varn = (varn env) - 1 ; vari = (vari env) + 1}) next test1 : Env test1 = whileTest 10 (λ env → whileLoop env (λ env1 → env1 )) proof1 : whileTest 10 (λ env → whileLoop env (λ e → (vari e) ≡ 10 )) proof1 = refl -- ↓PostCondition whileTest' : {l : Level} {t : Set l} → {c10 : ℕ } → (Code : (env : Env) → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) → t) → t whileTest' {_} {_} {c10} next = next env proof2 where env : Env env = record {vari = 0 ; varn = c10} proof2 : ((vari env) ≡ 0) /\ ((varn env) ≡ c10) -- PostCondition proof2 = record {pi1 = refl ; pi2 = refl} open import Data.Empty open import Data.Nat.Properties lemma1 : {i : ℕ} → ¬ 1 ≤ i → i ≡ 0 lemma1 {zero} not = refl lemma1 {suc i} not = ⊥-elim ( not (s≤s z≤n) ) -- Condition to Invaliant conversion1 : {l : Level} {t : Set l } → (env : Env) → {c10 : ℕ } → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) → (Code : (env1 : Env) → (varn env1 + vari env1 ≡ c10) → t) → t conversion1 env {c10} p1 next = next env proof4 where proof4 : varn env + vari env ≡ c10 proof4 = let open ≡-Reasoning in begin varn env + vari env ≡⟨ cong ( λ n → n + vari env ) (pi2 p1 ) ⟩ c10 + vari env ≡⟨ cong ( λ n → c10 + n ) (pi1 p1 ) ⟩ c10 + 0 ≡⟨ +-sym {c10} {0} ⟩ c10 ∎ open import Data.Unit hiding ( _≟_ ; _≤?_ ; _≤_) whileTestSpec1 : (c10 : ℕ) → (e1 : Env ) → vari e1 ≡ c10 → ⊤ whileTestSpec1 _ _ x = tt whileLoopSeg : {l : Level} {t : Set l} → {c10 : ℕ } → (env : Env) → ((varn env) + (vari env) ≡ c10) → (next : (e1 : Env )→ varn e1 + vari e1 ≡ c10 → varn e1 < varn env → t) -- next with PostCondition → (exit : (e1 : Env )→ vari e1 ≡ c10 → t) → t whileLoopSeg env proof next exit with ( suc zero ≤? (varn env) ) whileLoopSeg {_} {_} {c10} env proof next exit | no p = exit env ( begin vari env ≡⟨ refl ⟩ 0 + vari env ≡⟨ cong (λ k → k + vari env) (sym (lemma1 p )) ⟩ varn env + vari env ≡⟨ proof ⟩ c10 ∎ ) where open ≡-Reasoning whileLoopSeg {_} {_} {c10} env proof next exit | yes p = next env1 (proof3 p ) (proof4 (varn env) p) where env1 = record {varn = (varn env) - 1 ; vari = (vari env) + 1} 1<0 : 1 ≤ zero → ⊥ 1<0 () proof4 : (i : ℕ) → 1 ≤ i → i - 1 < i proof4 zero () proof4 (suc i) lt = begin suc (suc i - 1 ) ≤⟨ ≤-refl ⟩ suc i ∎ where open ≤-Reasoning proof3 : (suc zero ≤ (varn env)) → varn env1 + vari env1 ≡ c10 proof3 (s≤s lt) with varn env proof3 (s≤s z≤n) | zero = ⊥-elim (1<0 p) proof3 (s≤s (z≤n {n'}) ) | suc n = let open ≡-Reasoning in begin n' + (vari env + 1) ≡⟨ cong ( λ z → n' + z ) ( +-sym {vari env} {1} ) ⟩ n' + (1 + vari env ) ≡⟨ sym ( +-assoc (n') 1 (vari env) ) ⟩ (n' + 1) + vari env ≡⟨ cong ( λ z → z + vari env ) +1≡suc ⟩ (suc n' ) + vari env ≡⟨⟩ varn env + vari env ≡⟨ proof ⟩ c10 ∎ open import Relation.Binary.Definitions nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥ nat-≤> (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x lemma3 : {i j : ℕ} → 0 ≡ i → j < i → ⊥ lemma3 refl () lemma5 : {i j : ℕ} → i < 1 → j < i → ⊥ lemma5 (s≤s z≤n) () TerminatingLoopS : {l : Level} {t : Set l} (Index : Set ) → {Invraiant : Index → Set } → ( reduce : Index → ℕ) → (loop : (r : Index) → Invraiant r → (next : (r1 : Index) → Invraiant r1 → reduce r1 < reduce r → t ) → t) → (r : Index) → (p : Invraiant r) → t TerminatingLoopS {_} {t} Index {Invraiant} reduce loop r p with <-cmp 0 (reduce r) ... | tri≈ ¬a b ¬c = loop r p (λ r1 p1 lt → ⊥-elim (lemma3 b lt) ) ... | tri< a ¬b ¬c = loop r p (λ r1 p1 lt1 → TerminatingLoop1 (reduce r) r r1 (≤-step lt1) p1 lt1 ) where TerminatingLoop1 : (j : ℕ) → (r r1 : Index) → reduce r1 < suc j → Invraiant r1 → reduce r1 < reduce r → t TerminatingLoop1 zero r r1 n≤j p1 lt = loop r1 p1 (λ r2 p1 lt1 → ⊥-elim (lemma5 n≤j lt1)) TerminatingLoop1 (suc j) r r1 n≤j p1 lt with <-cmp (reduce r1) (suc j) ... | tri< a ¬b ¬c = TerminatingLoop1 j r r1 a p1 lt ... | tri≈ ¬a b ¬c = loop r1 p1 (λ r2 p2 lt1 → TerminatingLoop1 j r1 r2 (subst (λ k → reduce r2 < k ) b lt1 ) p2 lt1 ) ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c n≤j ) proofGearsTermS : {c10 : ℕ } → ⊤ proofGearsTermS {c10} = whileTest' {_} {_} {c10} (λ n p → conversion1 n p (λ n1 p1 → TerminatingLoopS Env (λ env → varn env) (λ n2 p2 loop → whileLoopSeg {_} {_} {c10} n2 p2 loop (λ ne pe → whileTestSpec1 c10 ne pe)) n1 p1 ))