view whileTestGears.agda @ 5:17e4f3b58148

add future code proofGears
author ryokka
date Fri, 14 Dec 2018 19:51:54 +0900
parents 64bd5c236002
children 28e80739eed6
line wrap: on
line source

module whileTestGears where

open import Function
open import Data.Nat
open import Data.Bool hiding ( _≟_ ; _∧_)
open import Level renaming ( suc to succ ; zero to Zero )
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Relation.Binary.PropositionalEquality


record Env  : Set where
  field
    varn : ℕ
    vari : ℕ
open Env

_-_ : ℕ -> ℕ -> ℕ 
x - zero  = x
zero - _  = zero
(suc x) - (suc y)  = x - y

record _∧_ {n : Level } (a : Set n) (b : Set n): Set n where
  field
    pi1 : a
    pi2 : b

lt : ℕ -> ℕ -> Bool
lt x y with (suc x ) ≤? y
lt x y | yes p = true
lt x y | no ¬p = false

Equal : ℕ -> ℕ -> Bool
Equal x y with x ≟ y
Equal x y | yes p = true
Equal x y | no ¬p = false

whileTest : {l : Level} {t : Set l} -> (Code : Env -> t) -> t
whileTest next = next (record {varn = 10 ; vari = 0} )

{-# TERMINATING #-}
whileLoop : {l : Level} {t : Set l} -> Env -> (Code : Env -> t) -> t
whileLoop env next with lt 0 (varn env)
whileLoop env next | false = next env
whileLoop env next | true =
    whileLoop (record {varn = (varn env) - 1 ; vari = (vari env) + 1}) next

test1 : Env
test1 = whileTest (λ env → whileLoop env (λ env1 → env1 ))


proof1 : whileTest (λ env → whileLoop env (λ e → (vari e) ≡ 10 ))
proof1 = refl


record EnvWithCond : Set (succ Zero) where
  field
    input : Env
    condition : Set
    proof : condition
open EnvWithCond



-- stmt2Cond : {l : Level} → EnvWithCond {l} → 
-- stmt2Cond env = (Equal (varn' env) 10) ∧ (Equal (vari' env) 0)

whileTest' : {l : Level} {t : Set l}  -> (Code : (env : Env)  -> ((vari env) ≡ 0) ∧ ((varn env) ≡ 10) -> t) -> t
whileTest' next = next env proof2
  where
    env : Env
    env = record {vari = 0 ; varn = 10}
    proof2 : ((vari env) ≡ 0) ∧ ((varn env) ≡ 10)
    proof2 = record {pi1 = refl ; pi2 = refl}
    
{-# TERMINATING #-}
whileLoop' : {l : Level} {t : Set l} -> (env : Env) -> ((varn env) + (vari env) ≡ 10) -> (Code : Env -> t) -> t
whileLoop' env proof next with lt 0 (varn  env)
whileLoop' env proof next | false = next env 
whileLoop' env proof next | true = whileLoop' env1 proof3 next
    where
      env1 = record {varn = (varn  env) - 1 ; vari = (vari env) + 1}
      proof3 : varn env1 + vari env1 ≡ 10
      proof3 = {!!}

conversion1 : {l : Level} {t : Set l } → (env : Env) -> ((vari env) ≡ 0) ∧ ((varn env) ≡ 10)
               -> (Code : (env1 : Env) -> (varn env1 + vari env1 ≡ 10) -> t) -> t
conversion1 = {!!}

proofGears : whileTest' (λ n →  conversion1 n {!!} (λ n1 → whileLoop' n1 {!!}  (λ n2 → (vari n2) ≡ 10)))
proofGears = {!!}