Mercurial > hg > Members > ryokka > HoareLogic
view whileTestGears.agda @ 50:2edb44c5bf52
add s1~3, proofs
author | ryokka |
---|---|
date | Wed, 18 Dec 2019 20:08:58 +0900 |
parents | 91d6d8097a39 |
children | 3f4f93ac841d |
line wrap: on
line source
module whileTestGears where open import Function open import Data.Nat open import Data.Bool hiding ( _≟_ ; _≤?_ ; _≤_ ; _<_) open import Level renaming ( suc to succ ; zero to Zero ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Binary.PropositionalEquality open import utilities open _/\_ record Env : Set (succ Zero) where field varn : ℕ vari : ℕ open Env whileTest : {l : Level} {t : Set l} → (c10 : ℕ) → (Code : Env → t) → t whileTest c10 next = next (record {varn = c10 ; vari = 0 } ) {-# TERMINATING #-} whileLoop : {l : Level} {t : Set l} → Env → (Code : Env → t) → t whileLoop env next with lt 0 (varn env) whileLoop env next | false = next env whileLoop env next | true = whileLoop (record env {varn = (varn env) - 1 ; vari = (vari env) + 1}) next test1 : Env test1 = whileTest 10 (λ env → whileLoop env (λ env1 → env1 )) proof1 : whileTest 10 (λ env → whileLoop env (λ e → (vari e) ≡ 10 )) proof1 = refl -- ↓PostCondition whileTest' : {l : Level} {t : Set l} → {c10 : ℕ } → (Code : (env : Env ) → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) → t) → t whileTest' {_} {_} {c10} next = next env proof2 where env : Env env = record {vari = 0 ; varn = c10 } proof2 : ((vari env) ≡ 0) /\ ((varn env) ≡ c10) -- PostCondition proof2 = record {pi1 = refl ; pi2 = refl} open import Data.Empty open import Data.Nat.Properties {-# TERMINATING #-} -- ↓PreCondition(Invaliant) whileLoop' : {l : Level} {t : Set l} → (env : Env ) → {c10 : ℕ } → ((varn env) + (vari env) ≡ c10) → (Code : Env → t) → t whileLoop' env proof next with ( suc zero ≤? (varn env) ) whileLoop' env proof next | no p = next env whileLoop' env {c10} proof next | yes p = whileLoop' env1 (proof3 p ) next where env1 = record env {varn = (varn env) - 1 ; vari = (vari env) + 1} 1<0 : 1 ≤ zero → ⊥ 1<0 () proof3 : (suc zero ≤ (varn env)) → varn env1 + vari env1 ≡ c10 proof3 (s≤s lt) with varn env proof3 (s≤s z≤n) | zero = ⊥-elim (1<0 p) proof3 (s≤s (z≤n {n'}) ) | suc n = let open ≡-Reasoning in begin n' + (vari env + 1) ≡⟨ cong ( λ z → n' + z ) ( +-sym {vari env} {1} ) ⟩ n' + (1 + vari env ) ≡⟨ sym ( +-assoc (n') 1 (vari env) ) ⟩ (n' + 1) + vari env ≡⟨ cong ( λ z → z + vari env ) +1≡suc ⟩ (suc n' ) + vari env ≡⟨⟩ varn env + vari env ≡⟨ proof ⟩ c10 ∎ -- Condition to Invariant conversion1 : {l : Level} {t : Set l } → (env : Env ) → {c10 : ℕ } → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) → (Code : (env1 : Env ) → (varn env1 + vari env1 ≡ c10) → t) → t conversion1 env {c10} p1 next = next env proof4 where proof4 : varn env + vari env ≡ c10 proof4 = let open ≡-Reasoning in begin varn env + vari env ≡⟨ cong ( λ n → n + vari env ) (pi2 p1 ) ⟩ c10 + vari env ≡⟨ cong ( λ n → c10 + n ) (pi1 p1 ) ⟩ c10 + 0 ≡⟨ +-sym {c10} {0} ⟩ c10 ∎ proofGears : {c10 : ℕ } → Set proofGears {c10} = whileTest' {_} {_} {c10} (λ n p1 → conversion1 n p1 (λ n1 p2 → whileLoop' n1 p2 (λ n2 → ( vari n2 ≡ c10 )))) -- proofGearsMeta : {c10 : ℕ } → proofGears {c10} -- proofGearsMeta {c10} = {!!} -- net yet done -- -- openended Env c <=> Context -- open import Relation.Nullary open import Relation.Binary whileTestP : {l : Level} {t : Set l} → (c10 : ℕ) → (Code : Env → t) → t whileTestP c10 next = next (record {varn = c10 ; vari = 0 } ) whileLoopP : {l : Level} {t : Set l} → Env → (next : Env → t) → (exit : Env → t) → t whileLoopP env next exit with <-cmp 0 (varn env) whileLoopP env next exit | tri≈ ¬a b ¬c = exit env whileLoopP env next exit | tri< a ¬b ¬c = next (record env {varn = (varn env) - 1 ; vari = (vari env) + 1 }) {-# TERMINATING #-} loopP : {l : Level} {t : Set l} → Env → (exit : Env → t) → t loopP env exit = whileLoopP env (λ env → loopP env exit ) exit whileTestPCall : {c10 : ℕ } → Set whileTestPCall {c10} = whileTestP {_} {_} c10 (λ env → loopP env (λ env → ( vari env ≡ c10 ))) data whileTestStateP (c10 i n : ℕ ) : Set where pstate1 : (i ≡ 0) /\ (n ≡ c10) → whileTestStateP c10 i n -- n ≡ c10 pstate2 : (0 < n) → (n < c10) → (n + i ≡ c10) → whileTestStateP c10 i n -- 0 < n < c10 pfinstate : (n ≡ 0 ) → (i ≡ c10 ) → whileTestStateP c10 i n -- n ≡ 0 record EnvP : Set (succ Zero) where field env : Env c10 : ℕ cx : whileTestStateP c10 (vari env) (varn env) open EnvP s1 : (c10 : ℕ) → EnvP s1 c10 = record {env = record {vari = 0 ; varn = c10} ; c10 = c10 ; cx = pstate1 (record {pi1 = refl ; pi2 = refl})} s2 : (e : EnvP) → varn (env e) > 0 → varn (env e) < c10 e → EnvP s2 e n>0 n<c10 with <-cmp 0 (varn (env e)) s2 e n>0 n<c10 | tri< a ¬b ¬c = record { env = record { varn = varn (env e) - 1 ; vari = vari (env e) + 1 } ; c10 = c10 e ; cx = pstate2 {!!} {!!} {!!} } s2 e n>0 n<c10 | tri≈ ¬a b ¬c = record { env = record { varn = varn (env e) - 1 ; vari = vari (env e) + 1 } ; c10 = c10 e ; cx = pfinstate {!!} {!!} } s3 : (e : EnvP) → varn (env e) ≡ 0 → vari (env e) ≡ c10 e s3 record { env = record { varn = .0 ; vari = vari₁ } ; c10 = c11 ; cx = cx₁ } refl = {!!} proofs : (c : ℕ) (e : EnvP) → vari (env e) ≡ c10 e proofs c e = s3 (s2 (s1 {!!}) {!!} {!!}) {!!} whileTestPwithProof : {l : Level} {t : Set l} → (c10 : ℕ ) → (next : (e : EnvP ) → t) → t whileTestPwithProof {l} {t} c10 next = next record { env = env1 ; c10 = c10 ; cx = cx1 } where env1 : Env env1 = whileTestP c10 ( λ e → e ) cx1 : whileTestStateP c10 (vari env1) (varn env1) cx1 = pstate1 record { pi1 = refl ; pi2 = refl } {-# TERMINATING #-} loopPwithProof : {l : Level} {t : Set l} → (e : EnvP ) → (exit : (e : EnvP ) → t ) → t loopPwithProof e exit = whileLoopP (env e) (λ e1 → loopPwithProof record e { env = e1 ; cx = {!!} } exit ) (λ env → exit {!!} ) where lemma : {!!} lemma = {!!} ConvP : (e : EnvP) → EnvP ConvP = {!!} whileTestPProof : {c : ℕ } → Set whileTestPProof {c} = whileTestPwithProof c $ λ e → loopPwithProof e (λ e eq → vari (env e) ≡ c10 e ) (ConvP e ) whileTestPProofMeta : {c10 : ℕ } → whileTestPProof {c10} whileTestPProofMeta {c10} = {!!}