Mercurial > hg > Members > ryokka > HoareLogic
view utilities.agda @ 62:bfe7d83cf9ba
writeing Gears Semmantics of commands
author | ryokka |
---|---|
date | Sat, 21 Dec 2019 21:12:07 +0900 |
parents | a39a82820742 |
children | 52d957db0222 |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} module utilities where open import Function open import Data.Nat open import Data.Product open import Data.Bool hiding ( _≟_ ; _≤?_) open import Level renaming ( suc to succ ; zero to Zero ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Binary.PropositionalEquality Pred : Set -> Set₁ Pred X = X -> Set Imply : Set -> Set -> Set Imply X Y = X -> Y Iff : Set -> Set -> Set Iff X Y = Imply X Y × Imply Y X record _/\_ {n : Level } (a : Set n) (b : Set n): Set n where field pi1 : a pi2 : b open _/\_ _-_ : ℕ → ℕ → ℕ x - zero = x zero - _ = zero (suc x) - (suc y) = x - y +zero : { y : ℕ } → y + zero ≡ y +zero {zero} = refl +zero {suc y} = cong ( λ x → suc x ) ( +zero {y} ) +-sym : { x y : ℕ } → x + y ≡ y + x +-sym {zero} {zero} = refl +-sym {zero} {suc y} = let open ≡-Reasoning in begin zero + suc y ≡⟨⟩ suc y ≡⟨ sym +zero ⟩ suc y + zero ∎ +-sym {suc x} {zero} = let open ≡-Reasoning in begin suc x + zero ≡⟨ +zero ⟩ suc x ≡⟨⟩ zero + suc x ∎ +-sym {suc x} {suc y} = cong ( λ z → suc z ) ( let open ≡-Reasoning in begin x + suc y ≡⟨ +-sym {x} {suc y} ⟩ suc (y + x) ≡⟨ cong ( λ z → suc z ) (+-sym {y} {x}) ⟩ suc (x + y) ≡⟨ sym ( +-sym {y} {suc x}) ⟩ y + suc x ∎ ) minus-plus : { x y : ℕ } → (suc x - 1) + (y + 1) ≡ suc x + y minus-plus {zero} {y} = +-sym {y} {1} minus-plus {suc x} {y} = cong ( λ z → suc z ) (minus-plus {x} {y}) +1≡suc : { x : ℕ } → x + 1 ≡ suc x +1≡suc {zero} = refl +1≡suc {suc x} = cong ( λ z → suc z ) ( +1≡suc {x} ) lt : ℕ → ℕ → Bool lt x y with (suc x ) ≤? y lt x y | yes p = true lt x y | no ¬p = false predℕ : {n : ℕ } → lt 0 n ≡ true → ℕ predℕ {zero} () predℕ {suc n} refl = n predℕ+1=n : {n : ℕ } → (less : lt 0 n ≡ true ) → (predℕ less) + 1 ≡ n predℕ+1=n {zero} () predℕ+1=n {suc n} refl = +1≡suc suc-predℕ=n : {n : ℕ } → (less : lt 0 n ≡ true ) → suc (predℕ less) ≡ n suc-predℕ=n {zero} () suc-predℕ=n {suc n} refl = refl Equal : ℕ → ℕ → Bool Equal x y with x ≟ y Equal x y | yes p = true Equal x y | no ¬p = false _⇒_ : Bool → Bool → Bool false ⇒ _ = true true ⇒ true = true true ⇒ false = false ⇒t : {x : Bool} → x ⇒ true ≡ true ⇒t {x} with x ⇒t {x} | false = refl ⇒t {x} | true = refl f⇒ : {x : Bool} → false ⇒ x ≡ true f⇒ {x} with x f⇒ {x} | false = refl f⇒ {x} | true = refl ∧-pi1 : { x y : Bool } → x ∧ y ≡ true → x ≡ true ∧-pi1 {x} {y} eq with x | y | eq ∧-pi1 {x} {y} eq | false | b | () ∧-pi1 {x} {y} eq | true | false | () ∧-pi1 {x} {y} eq | true | true | refl = refl ∧-pi2 : { x y : Bool } → x ∧ y ≡ true → y ≡ true ∧-pi2 {x} {y} eq with x | y | eq ∧-pi2 {x} {y} eq | false | b | () ∧-pi2 {x} {y} eq | true | false | () ∧-pi2 {x} {y} eq | true | true | refl = refl ∧true : { x : Bool } → x ∧ true ≡ x ∧true {x} with x ∧true {x} | false = refl ∧true {x} | true = refl true∧ : { x : Bool } → true ∧ x ≡ x true∧ {x} with x true∧ {x} | false = refl true∧ {x} | true = refl bool-case : ( x : Bool ) { p : Set } → ( x ≡ true → p ) → ( x ≡ false → p ) → p bool-case x T F with x bool-case x T F | false = F refl bool-case x T F | true = T refl impl⇒ : {x y : Bool} → (x ≡ true → y ≡ true ) → x ⇒ y ≡ true impl⇒ {x} {y} p = bool-case x (λ x=t → let open ≡-Reasoning in begin x ⇒ y ≡⟨ cong ( λ z → x ⇒ z ) (p x=t ) ⟩ x ⇒ true ≡⟨ ⇒t ⟩ true ∎ ) ( λ x=f → let open ≡-Reasoning in begin x ⇒ y ≡⟨ cong ( λ z → z ⇒ y ) x=f ⟩ true ∎ ) Equal→≡ : { x y : ℕ } → Equal x y ≡ true → x ≡ y Equal→≡ {x} {y} eq with x ≟ y Equal→≡ {x} {y} refl | yes refl = refl Equal→≡ {x} {y} () | no ¬p Equal+1 : { x y : ℕ } → Equal x y ≡ Equal (suc x) (suc y) Equal+1 {x} {y} with x ≟ y Equal+1 {x} {.x} | yes refl = {!!} Equal+1 {x} {y} | no ¬p = {!!} open import Data.Empty ≡→Equal : { x y : ℕ } → x ≡ y → Equal x y ≡ true ≡→Equal {x} {.x} refl with x ≟ x ≡→Equal {x} {.x} refl | yes refl = refl ≡→Equal {x} {.x} refl | no ¬p = ⊥-elim ( ¬p refl )