Mercurial > hg > Members > ryokka > HoareLogic
changeset 62:bfe7d83cf9ba
writeing Gears Semmantics of commands
author | ryokka |
---|---|
date | Sat, 21 Dec 2019 21:12:07 +0900 |
parents | 62dcb0ae2c94 |
children | 222dd3869ab0 |
files | RelOp.agda whileTestGears.agda |
diffstat | 2 files changed, 38 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/RelOp.agda Sat Dec 21 19:37:41 2019 +0900 +++ b/RelOp.agda Sat Dec 21 21:12:07 2019 +0900 @@ -55,7 +55,6 @@ -- unionInf f = ⋃_{n ∈ ω} f(n) unionInf : ∀ {l} -> (ℕ -> Rel S l) -> Rel S l unionInf f a b = ∃ (λ (n : ℕ) → f n a b) - -- restPre X R = { (s1,s2) ∈ R | s1 ∈ X } restPre : ∀ {l} -> Pred S -> Rel S l -> Rel S l restPre X R a b = X a × R a b
--- a/whileTestGears.agda Sat Dec 21 19:37:41 2019 +0900 +++ b/whileTestGears.agda Sat Dec 21 21:12:07 2019 +0900 @@ -3,9 +3,11 @@ open import Function open import Data.Nat open import Data.Bool hiding ( _≟_ ; _≤?_ ; _≤_ ; _<_) +open import Data.Product open import Level renaming ( suc to succ ; zero to Zero ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Binary.PropositionalEquality +open import Agda.Builtin.Unit open import utilities open _/\_ @@ -174,11 +176,13 @@ c10 env ∎ + +-- induction にする {-# TERMINATING #-} loopPwP : {l : Level} {t : Set l} → (env : Envc ) → whileTestStateP s2 env → (exit : (env : Envc ) → whileTestStateP sf env → t) → t loopPwP env s exit = whileLoopPwP env s (λ env s → loopPwP env s exit ) exit - +-- wP を Env のRel にする Env → Env → Set にしちゃう whileTestPCallwP : (c : ℕ ) → Set whileTestPCallwP c = whileTestPwP {_} {_} c ( λ env s → loopPwP env (conv env s) ( λ env s → vari env ≡ c ) ) where conv : (env : Envc ) → (vari env ≡ 0) /\ (varn env ≡ c10 env) → varn env + vari env ≡ c10 env @@ -191,10 +195,40 @@ -- = whileTestPwP (suc c) (λ env s → loopPwP env (conv1 env s) (λ env₁ s₁ → {!!})) +data GComm : Set (succ Zero) where + Skip : GComm + Abort : GComm + PComm : Set → GComm + -- Seq : GComm → GComm → GComm + -- If : whileTestState → GComm → GComm → GComm + while : whileTestState → GComm → GComm -ProofConnect : {l : Level} {t : Set l} → (pr1 : Envc → Set → Set) → (Envc → Set → (Envc → Set → t)) → (pr2 : Envc → Set → Set) -ProofConnect prev f env post with f env ({!!}) {!!} -... | tt = {!!} +gearsSem : {l : Level} {t : Set l} → {c10 : ℕ} → Envc → Envc → (Envc → (Envc → t) → t) → Set +gearsSem pre post = {!!} + +unionInf : ∀ {l} -> (ℕ -> Rel Set l) -> Rel Set l +unionInf f a b = ∃ (λ (n : ℕ) → f n a b) + +comp : ∀ {l} → Rel Set l → Rel Set l → Rel Set (succ Zero Level.⊔ l) +comp r1 r2 a b = ∃ (λ (a' : Set) → r1 a a' × r2 a' b) + +-- repeat : ℕ -> rel set zero -> rel set zero +-- repeat ℕ.zero r = λ x x₁ → ⊤ +-- repeat (ℕ.suc m) r = comp (repeat m r) r + +GSemComm : {l : Level} {t : Set l} → GComm → Rel whileTestState (Zero) +GSemComm Skip = λ x x₁ → ⊤ +GSemComm Abort = λ x x₁ → ⊥ +GSemComm (PComm x) = λ x₁ x₂ → x +-- GSemComm (Seq con con₁ con₃) = λ x₁ x₂ → {!!} +-- GSemComm (If x con con₁) = {!!} +GSemComm (while x con) = λ x₁ x₂ → unionInf {Zero} (λ (n : ℕ) → {!!}) {!!} {!!} + +ProofConnect : {l : Level} {t : Set l} + → (pr1 : Envc → Set → Set) + → (Envc → Set → (Envc → Set → t)) + → (Envc → Set → Set) +ProofConnect prev f env post = {!!} -- with f env ({!!}) {!!} Proof2 : (env : Envc) → (vari env ≡ c10 env) → vari env ≡ c10 env Proof2 _ refl = refl