Mercurial > hg > Members > ryokka > HoareLogic
view whileTestGears.agda @ 45:de8449321356
close
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 15 Dec 2019 21:42:28 +0900 |
parents | 5a3c9d087c7c |
children |
line wrap: on
line source
module whileTestGears where open import Function open import Data.Nat open import Data.Bool hiding ( _≟_ ; _≤?_ ; _≤_ ; _<_) open import Level renaming ( suc to succ ; zero to Zero ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Binary.PropositionalEquality open import utilities open _/\_ record Env (Cxt : Set) : Set (succ Zero) where field varn : ℕ vari : ℕ cx : Cxt open Env whileTest : {l : Level} {t : Set l} {Cxt : Set} (c : Cxt ) → (c10 : ℕ) → (Code : Env Cxt → t) → t whileTest c c10 next = next (record {varn = c10 ; vari = 0 ; cx = c } ) {-# TERMINATING #-} whileLoop : {l : Level} {t : Set l} {Cxt : Set} {c : Cxt } → Env Cxt → (Code : Env Cxt → t) → t whileLoop env next with lt 0 (varn env) whileLoop env next | false = next env whileLoop env next | true = whileLoop (record env {varn = (varn env) - 1 ; vari = (vari env) + 1}) next test1 : {Cxt : Set } → (c : Cxt) → Env Cxt test1 c = whileTest c 10 (λ env → whileLoop env (λ env1 → env1 )) proof1 : {Cxt : Set } (c : Cxt ) → whileTest c 10 (λ env → whileLoop env (λ e → (vari e) ≡ 10 )) proof1 c = refl -- ↓PostCondition whileTest' : {l : Level} {t : Set l} {Cxt : Set} → {c : Cxt} → {c10 : ℕ } → (Code : (env : Env Cxt ) → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) → t) → t whileTest' {_} {_} {Cxt} {c} {c10} next = next env proof2 where env : Env Cxt env = record {vari = 0 ; varn = c10 ; cx = c } proof2 : ((vari env) ≡ 0) /\ ((varn env) ≡ c10) -- PostCondition proof2 = record {pi1 = refl ; pi2 = refl} open import Data.Empty open import Data.Nat.Properties {-# TERMINATING #-} -- ↓PreCondition(Invaliant) whileLoop' : {l : Level} {t : Set l} {Cxt : Set} {c : Cxt } → (env : Env Cxt ) → {c10 : ℕ } → ((varn env) + (vari env) ≡ c10) → (Code : Env Cxt → t) → t whileLoop' env proof next with ( suc zero ≤? (varn env) ) whileLoop' env proof next | no p = next env whileLoop' env {c10} proof next | yes p = whileLoop' env1 (proof3 p ) next where env1 = record env {varn = (varn env) - 1 ; vari = (vari env) + 1} 1<0 : 1 ≤ zero → ⊥ 1<0 () proof3 : (suc zero ≤ (varn env)) → varn env1 + vari env1 ≡ c10 proof3 = {!!} -- proof3 (s≤s lt) with varn env -- proof3 (s≤s z≤n) | zero = ⊥-elim (1<0 p) -- proof3 (s≤s (z≤n {n'}) ) | suc n = let open ≡-Reasoning in -- begin -- n' + (vari env + 1) -- ≡⟨ cong ( λ z → n' + z ) ( +-sym {vari env} {1} ) ⟩ -- n' + (1 + vari env ) -- ≡⟨ sym ( +-assoc (n') 1 (vari env) ) ⟩ -- (n' + 1) + vari env -- ≡⟨ cong ( λ z → z + vari env ) +1≡suc ⟩ -- (suc n' ) + vari env -- ≡⟨⟩ -- varn env + vari env -- ≡⟨ proof ⟩ -- c10 -- ∎ -- Condition to Invaliant conversion1 : {l : Level} {t : Set l } {Cxt : Set} {c : Cxt } → (env : Env Cxt ) → {c10 : ℕ } → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) → (Code : (env1 : Env Cxt ) → (varn env1 + vari env1 ≡ c10) → t) → t conversion1 env {c10} p1 next = next env proof4 where proof4 : varn env + vari env ≡ c10 proof4 = let open ≡-Reasoning in begin varn env + vari env ≡⟨ cong ( λ n → n + vari env ) (pi2 p1 ) ⟩ c10 + vari env ≡⟨ cong ( λ n → c10 + n ) (pi1 p1 ) ⟩ c10 + 0 ≡⟨ +-sym {c10} {0} ⟩ c10 ∎ proofGears : {c10 : ℕ } → { Cxt : Set } → (c : Cxt ) → Set proofGears {c10} c = whileTest' {_} {_} {_} {c} {c10} (λ n p1 → conversion1 n p1 (λ n1 p2 → whileLoop' n1 p2 (λ n2 → ( vari n2 ≡ c10 )))) record Context (e : Set ) : Set (succ Zero) data whileTestState {Cxt : Set } (c10 : ℕ ) (env : Env Cxt ) : Set where error : whileTestState c10 env state1 : ((vari env) ≡ 0) /\ ((varn env) ≡ c10) → whileTestState c10 env state2 : (varn env + vari env ≡ c10) → whileTestState c10 env finstate : ((vari env) ≡ c10 ) → whileTestState c10 env -- -- openended Env Cxt c <=> Context -- record Context e where field c10 : ℕ whileDG : Env e whileCond : whileTestState c10 whileDG open Context open import Relation.Nullary open import Relation.Binary -- -- transparency of condition -- whileCondP : Env {!!} → Set whileCondP env = varn env > 0 whileDec : (cxt : Context) → Dec (whileCondP (whileDG cxt)) whileDec cxt = {!!} whileTestContext : {l : Level} {t : Set l} → Context → (Code : Context → t) → t whileTestContext cxt next = next (record cxt { whileDG = record (whileDG cxt) {varn = c10 cxt ; vari = 0} ; whileCond = {!!} } ) {-# TERMINATING #-} whileLoopContext : {l : Level} {t : Set l} → Context → (Code : Context → t) → t whileLoopContext cxt next with lt 0 (varn (whileDG cxt) ) whileLoopContext cxt next | false = next cxt whileLoopContext cxt next | true = whileLoopContext (record cxt { whileDG = record (whileDG cxt) {varn = (varn (whileDG cxt)) - 1 ; vari = (vari (whileDG cxt)) + 1} ; whileCond = state2 (proof cxt) } ) next where proof : (cxt : Context) → (varn (whileDG cxt) - 1) + (vari (whileDG cxt) + 1) ≡ c10 cxt proof cxt = {!!} {-# TERMINATING #-} whileLoopStep : {l : Level} {t : Set l} → Env {!!} → (next : (e : Env {!!} ) → t) (exit : (e : Env {!!} ) → t) → t whileLoopStep env next exit with <-cmp 0 (varn env) whileLoopStep env next exit | tri≈ _ eq _ = exit env whileLoopStep env next exit | tri< gt ¬eq _ = next record env {varn = (varn env) - 1 ; vari = (vari env) + 1} whileLoopStep env next exit | tri> _ _ c = ⊥-elim (m<n⇒n≢0 {varn env} {0} c refl) whileTestProof : {l : Level} {t : Set l} → Context → (Code : (cxt : Context ) → ¬ (vari (whileDG cxt) ≡ varn (whileDG cxt) ) → t) → t whileTestProof cxt next = next record cxt { whileDG = out ; whileCond = init } i!=n where out : Env {!!} out = whileTest {!!} (c10 cxt) ( λ e → e ) init : whileTestState (c10 cxt) out init = state1 record { pi1 = refl ; pi2 = refl } i!=n : ¬ vari out ≡ varn out i!=n eq = {!!} {-# TERMINATING #-} whileLoopProof : {l : Level} {t : Set l} → (cxt : Context ) → whileCondP (whileDG cxt) → (continue : (cxt : Context ) → whileCondP (whileDG cxt) → t) (exit : Context → ¬ whileCondP (whileDG cxt) → t) → t whileLoopProof cxt i!=n next exit = whileLoopStep (whileDG cxt) ( λ env → next record cxt { whileDG = env ; whileCond = {!!} } {!!} ) ( λ env → exit record cxt { whileDG = env ; whileCond = exitCond env {!!} } {!!} ) where proof5 : (e : Env {!!} ) → varn e + vari e ≡ c10 cxt → 0 ≡ varn e → vari e ≡ c10 cxt proof5 record { varn = .0 ; vari = vari } refl refl = refl exitCond : (e : Env {!!} ) → 0 ≡ varn e → whileTestState (c10 cxt) e exitCond nenv eq1 with whileCond cxt | inspect whileDG cxt ... | state2 cond | record { eq = eq2 } = finstate ( proof5 nenv {!!} eq1 ) ... | _ | _ = error whileConvProof : {l : Level} {t : Set l} → (cxt : Context ) → ¬ (vari (whileDG cxt) ≡ varn (whileDG cxt)) → ((cxt : Context ) → ¬ (vari (whileDG cxt) ≡ varn (whileDG cxt)) → t) → t whileConvProof cxt i!=n next = next record cxt { whileCond = postCond } i!=n where proof4 : (e : Env {!!} ) → (vari e ≡ 0) /\ (varn e ≡ c10 cxt) → varn e + vari e ≡ c10 cxt proof4 env p1 = let open ≡-Reasoning in begin varn env + vari env ≡⟨ cong ( λ n → n + vari env ) (pi2 p1 ) ⟩ c10 cxt + vari env ≡⟨ cong ( λ n → c10 cxt + n ) (pi1 p1 ) ⟩ c10 cxt + 0 ≡⟨ +-sym {c10 cxt} {0} ⟩ c10 cxt ∎ postCond : whileTestState (c10 cxt) (whileDG cxt) postCond with whileCond cxt ... | state1 cond = state2 (proof4 (whileDG cxt) cond ) ... | _ = error {-# TERMINATING #-} loop : {l : Level} {t : Set l} → (cxt : Context ) → whileCondP (whileDG cxt) → (exit : (cxt : Context ) → ¬ whileCondP (whileDG cxt) → t) → t loop cxt i!=n exit = whileLoopProof cxt i!=n (λ cxt → loop cxt {!!} {!!} exit ) {!!} {-# TERMINATING #-} loopProof : {l : Level} {t : Set l} {P Inv : Context → Set } → (c : Context) → (if : (c : Context) → Dec (P c)) → ( (cont : (c2 : Context) → (P c2) → t) → (exit : (c2 : Context) → ¬ (P c2) → t) → t ) → t loopProof {l} {t} {P} {Inv} cxt if f = {!!} where lem : (c : Context) → t lem c with if c lem c | no ¬p = {!!} -- f c (λ c1 _ → lem c1 ) lem c | yes p = {!!} whileLoopProof' : {l : Level} {t : Set l} → (cxt : Context ) → ( continue : (cxt : Context ) → whileCondP (whileDG cxt) → t) (exit : Context → ¬ whileCondP (whileDG cxt) → t) → t whileLoopProof' = {!!} proofWhileGear : (c : ℕ) (cxt : Context) → whileTestProof (record cxt { c10 = c ; whileCond = error }) $ λ cxt i!=n → whileConvProof cxt i!=n $ λ cxt i+n=c10 → loopProof cxt whileDec {!!} -- whileLoopProof' $ λ cxt _ → {!!} proofWhileGear c cxt = {!!}