Mercurial > hg > Members > ryokka > HoareLogic
view whileTestGears.agda @ 7:e7d6bdb6039d
fix test1
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 14 Dec 2018 22:35:38 +0900 |
parents | 28e80739eed6 |
children | 46b301ad4478 |
line wrap: on
line source
module whileTestGears where open import Function open import Data.Nat open import Data.Bool hiding ( _≟_ ; _∧_) open import Level renaming ( suc to succ ; zero to Zero ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Binary.PropositionalEquality record _∧_ {n : Level } (a : Set n) (b : Set n): Set n where field pi1 : a pi2 : b open _∧_ _-_ : ℕ -> ℕ -> ℕ x - zero = x zero - _ = zero (suc x) - (suc y) = x - y sym1 : { y : ℕ } -> y + zero ≡ y sym1 {zero} = refl sym1 {suc y} = cong ( λ x → suc x ) ( sym1 {y} ) +-sym : { x y : ℕ } -> x + y ≡ y + x +-sym {zero} {zero} = refl +-sym {zero} {suc y} = let open ≡-Reasoning in begin zero + suc y ≡⟨⟩ suc y ≡⟨ sym sym1 ⟩ suc y + zero ∎ +-sym {suc x} {zero} = let open ≡-Reasoning in begin suc x + zero ≡⟨ sym1 ⟩ suc x ≡⟨⟩ zero + suc x ∎ +-sym {suc x} {suc y} = cong ( λ z → suc z ) ( let open ≡-Reasoning in begin x + suc y ≡⟨ +-sym {x} {suc y} ⟩ suc (y + x) ≡⟨ cong ( λ z → suc z ) (+-sym {y} {x}) ⟩ suc (x + y) ≡⟨ sym ( +-sym {y} {suc x}) ⟩ y + suc x ∎ ) minus-plus : { x y : ℕ } -> (suc x - 1) + (y + 1) ≡ suc x + y minus-plus {zero} {y} = +-sym {y} {1} minus-plus {suc x} {y} = cong ( λ z → suc z ) (minus-plus {x} {y}) lt : ℕ -> ℕ -> Bool lt x y with (suc x ) ≤? y lt x y | yes p = true lt x y | no ¬p = false Equal : ℕ -> ℕ -> Bool Equal x y with x ≟ y Equal x y | yes p = true Equal x y | no ¬p = false record Env : Set where field varn : ℕ vari : ℕ open Env whileTest : {l : Level} {t : Set l} -> (Code : Env -> t) -> t whileTest next = next (record {varn = 10 ; vari = 0} ) {-# TERMINATING #-} whileLoop : {l : Level} {t : Set l} -> Env -> (Code : Env -> t) -> t whileLoop env next with lt 0 (varn env) whileLoop env next | false = next env whileLoop env next | true = whileLoop (record {varn = (varn env) - 1 ; vari = (vari env) + 1}) next test1 : Env test1 = whileTest (λ env → whileLoop env (λ env1 → env1 )) proof1 : whileTest (λ env → whileLoop env (λ e → (vari e) ≡ 10 )) proof1 = refl -- stmt2Cond : {l : Level} → EnvWithCond {l} → -- stmt2Cond env = (Equal (varn' env) 10) ∧ (Equal (vari' env) 0) whileTest' : {l : Level} {t : Set l} -> (Code : (env : Env) -> ((vari env) ≡ 0) ∧ ((varn env) ≡ 10) -> t) -> t whileTest' next = next env proof2 where env : Env env = record {vari = 0 ; varn = 10} proof2 : ((vari env) ≡ 0) ∧ ((varn env) ≡ 10) proof2 = record {pi1 = refl ; pi2 = refl} {-# TERMINATING #-} whileLoop' : {l : Level} {t : Set l} -> (env : Env) -> ((varn env) + (vari env) ≡ 10) -> (Code : Env -> t) -> t whileLoop' env proof next with lt 0 (varn env) whileLoop' env proof next | false = next env whileLoop' env proof next | true = whileLoop' env1 proof3 next where env1 = record {varn = (varn env) - 1 ; vari = (vari env) + 1} proof3 : varn env1 + vari env1 ≡ 10 proof3 = {!!} conversion1 : {l : Level} {t : Set l } → (env : Env) -> ((vari env) ≡ 0) ∧ ((varn env) ≡ 10) -> (Code : (env1 : Env) -> (varn env1 + vari env1 ≡ 10) -> t) -> t conversion1 env p1 next = next env proof4 where proof4 : varn env + vari env ≡ 10 proof4 = let open ≡-Reasoning in begin varn env + vari env ≡⟨ cong ( λ n → n + vari env ) (pi2 p1 ) ⟩ 10 + vari env ≡⟨ cong ( λ n → 10 + n ) (pi1 p1 ) ⟩ 10 + 0 ≡⟨⟩ 10 ∎ proofGears : Set proofGears = whileTest' (λ n p1 → conversion1 n p1 (λ n1 p2 → whileLoop' n1 p2 (λ n2 → ( vari n2 ≡ 10 ))))