Mercurial > hg > Members > ryokka > HoareLogic
changeset 80:148feaa1e346
write loopPPSemInduct
author | ryokka |
---|---|
date | Wed, 01 Jan 2020 21:50:38 +0900 |
parents | 52d957db0222 |
children | 0122f980427c |
files | whileTestGears.agda |
diffstat | 1 files changed, 28 insertions(+), 31 deletions(-) [+] |
line wrap: on
line diff
--- a/whileTestGears.agda Mon Dec 30 20:53:00 2019 +0900 +++ b/whileTestGears.agda Wed Jan 01 21:50:38 2020 +0900 @@ -214,7 +214,7 @@ → (next : (output : Envc ) → (whileTestStateP s2 input ) implies (whileTestStateP s2 output) → t) → (exit : (output : Envc ) → (whileTestStateP s2 input ) implies (whileTestStateP sf output) → t) → t whileLoopPSem' env@(record { c10 = c10 ; varn = zero ; vari = vari }) s _ exit = exit env (proof (λ z → z)) -whileLoopPSem' env@(record { c10 = c10 ; varn = suc varn ; vari = vari }) refl next _ = +whileLoopPSem' env@(record { c10 = c10 ; varn = suc varn ; vari = vari }) refl next exit = next (record env {c10 = c10 ; varn = varn ; vari = suc vari }) (proof λ x → +-suc varn vari) @@ -228,6 +228,7 @@ loopPP (suc n) input@(record { c10 = c10 ; varn = (suc varn₁) ; vari = vari }) refl = whileLoopP input (λ x → loopPP n (record x { c10 = c10 ; varn = varn₁ ; vari = suc vari }) refl) λ x → x -- ? loopPP' : (n : ℕ) → (input : Envc ) → (n ≡ varn input) → Envc + loopPP' zero input@(record { c10 = c10 ; varn = zero ; vari = vari }) refl = input loopPP' (suc n) input@(record { c10 = c10 ; varn = (suc varn₁) ; vari = vari }) refl = loopPP' n (record { c10 = c10 ; varn = varn₁ ; vari = suc vari }) refl -- ? @@ -239,18 +240,14 @@ -- lem output eq with <-cmp 0 (Envc.varn input) -- lem output refl | tri< a ¬b ¬c rewrite s2p = {!!} -- lem output refl | tri≈ ¬a refl ¬c = s2p + lem : (n : ℕ) → (env : Envc) → n + suc (vari env) ≡ suc (n + vari env) + lem n env = +-suc (n) (vari env) loopPPSemInduct : (n : ℕ) → (current : Envc) → (eq : n ≡ varn current) → (loopeq : output ≡ loopPP' n current eq) → (whileTestStateP s2 current ) → (whileTestStateP s2 current ) implies (whileTestStateP sf output) loopPPSemInduct zero current refl loopeq refl rewrite loopeq = proof (λ x → refl) -- loopeq には output ≡ loopPP zero current (zero = varn current) -- n を減らして loop を回しつつ証明したい - loopPPSemInduct (suc n) current refl loopeq refl = whileLoopPSem' current refl (λ output x → loopPPSemInduct (suc n) current {!!} {!!} {!!}) {!!} -- why we can't write loopPPSemInduct n (record { c10 = suc (n + vari current) ; varn = n ; vari = suc (vari current) }) hogefuga - -- loopPPSemInduct zero (record { c10 = vari current ; varn = zero ; vari = vari current }) {!!} {!!} refl) {!!} - - loopPPSemInduct2 : (n : ℕ) → (current : Envc) → (eq : n ≡ varn current) → (loopeq : output ≡ loopPP n current eq) - → (whileTestStateP s2 current ) → (whileTestStateP s2 current ) implies (whileTestStateP sf output) - loopPPSemInduct2 .0 record { c10 = .vari₁ ; varn = zero ; vari = vari₁ } refl loopeq refl rewrite loopeq = proof (λ x → refl) - loopPPSemInduct2 .(suc varn₁) record { c10 = .(suc (varn₁ + vari₁)) ; varn = (suc varn₁) ; vari = vari₁ } refl loopeq refl rewrite loopeq = whileLoopPSem' (record { c10 = (suc (varn₁ + vari₁)) ; varn = (suc varn₁) ; vari = vari₁ }) refl (λ output x → {!!}) λ exit x → {!!} + loopPPSemInduct (suc n) current refl loopeq refl rewrite (sym (lem n current)) = whileLoopPSem' current refl (λ output x → loopPPSemInduct n (record { c10 = n + suc (vari current) ; varn = n ; vari = suc (vari current) }) refl loopeq refl) (λ output x → loopPPSemInduct n (record { c10 = n + suc (vari current) ; varn = n ; vari = suc (vari current) }) refl loopeq refl) -- -- whileLoopPSem' current refl (λ output x → loopPPSemInduct2 (n) (current) refl loopeq refl) (λ output x → loopPPSemInduct2 (n) (current) refl loopeq refl) @@ -280,34 +277,34 @@ -- = whileTestPwP (suc c) (λ env s → loopPwP env (conv1 env s) (λ env₁ s₁ → {!!})) -data GComm : Set (succ Zero) where - Skip : GComm - Abort : GComm - PComm : Set → GComm - -- Seq : GComm → GComm → GComm - -- If : whileTestState → GComm → GComm → GComm - while : whileTestState → GComm → GComm +-- data GComm : Set (succ Zero) where +-- Skip : GComm +-- Abort : GComm +-- PComm : Set → GComm +-- -- Seq : GComm → GComm → GComm +-- -- If : whileTestState → GComm → GComm → GComm +-- while : whileTestState → GComm → GComm -gearsSem : {l : Level} {t : Set l} → {c10 : ℕ} → Envc → Envc → (Envc → (Envc → t) → t) → Set -gearsSem pre post = {!!} +-- gearsSem : {l : Level} {t : Set l} → {c10 : ℕ} → Envc → Envc → (Envc → (Envc → t) → t) → Set +-- gearsSem pre post = {!!} -unionInf : ∀ {l} -> (ℕ -> Rel Set l) -> Rel Set l -unionInf f a b = ∃ (λ (n : ℕ) → f n a b) +-- unionInf : ∀ {l} -> (ℕ -> Rel Set l) -> Rel Set l +-- unionInf f a b = ∃ (λ (n : ℕ) → f n a b) -comp : ∀ {l} → Rel Set l → Rel Set l → Rel Set (succ Zero Level.⊔ l) -comp r1 r2 a b = ∃ (λ (a' : Set) → r1 a a' × r2 a' b) +-- comp : ∀ {l} → Rel Set l → Rel Set l → Rel Set (succ Zero Level.⊔ l) +-- comp r1 r2 a b = ∃ (λ (a' : Set) → r1 a a' × r2 a' b) --- repeat : ℕ -> rel set zero -> rel set zero --- repeat ℕ.zero r = λ x x₁ → ⊤ --- repeat (ℕ.suc m) r = comp (repeat m r) r +-- -- repeat : ℕ -> rel set zero -> rel set zero +-- -- repeat ℕ.zero r = λ x x₁ → ⊤ +-- -- repeat (ℕ.suc m) r = comp (repeat m r) r -GSemComm : {l : Level} {t : Set l} → GComm → Rel whileTestState (Zero) -GSemComm Skip = λ x x₁ → ⊤ -GSemComm Abort = λ x x₁ → ⊥ -GSemComm (PComm x) = λ x₁ x₂ → x --- GSemComm (Seq con con₁ con₃) = λ x₁ x₂ → {!!} --- GSemComm (If x con con₁) = {!!} -GSemComm (while x con) = λ x₁ x₂ → unionInf {Zero} (λ (n : ℕ) → {!!}) {!!} {!!} +-- GSemComm : {l : Level} {t : Set l} → GComm → Rel whileTestState (Zero) +-- GSemComm Skip = λ x x₁ → ⊤ +-- GSemComm Abort = λ x x₁ → ⊥ +-- GSemComm (PComm x) = λ x₁ x₂ → x +-- -- GSemComm (Seq con con₁ con₃) = λ x₁ x₂ → {!!} +-- -- GSemComm (If x con con₁) = {!!} +-- GSemComm (while x con) = λ x₁ x₂ → unionInf {Zero} (λ (n : ℕ) → {!!}) {!!} {!!} ProofConnect : {l : Level} {t : Set l} → (pr1 : Envc → Set → Set)