Mercurial > hg > Members > ryokka > HoareLogic
changeset 18:6417f6d821e6
add Hoare again
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 24 Dec 2018 10:08:46 +0900 |
parents | b95a3cf9727c |
children | 5001cda86c3d |
files | Hoare.agda whileTestPrim.agda |
diffstat | 2 files changed, 270 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Hoare.agda Mon Dec 24 10:08:46 2018 +0900 @@ -0,0 +1,240 @@ +{-# OPTIONS --universe-polymorphism #-} + +open import Level +open import Data.Nat +open import Data.Product +open import Data.Bool +open import Relation.Binary +open import Relation.Nullary +open import Relation.Binary.Core + +open import whileTestPrim + +--open import SET + +module Hoare where + +-- (Cond : Set) +-- (PrimComm : Set) +-- (neg : Cond -> Cond) +-- (_/\_ : Cond -> Cond -> Cond) +-- (Tautology : Cond -> Cond -> Set) +-- (State : Set) +-- (Pred : State → Set) + +State = Env + +Pred : {!!} +Pred = {!!} + +SemCond : Cond -> Pred State +SemCond = {!!} + +-- open import RelOp +-- module RelOpState_= Rel State + +data RELA ( S : Set ) ( l : Level ) : Set l where + RelOpState_deltaGlob : RELA S l + RelOpState_delta : (Cond -> {!!}) → RELA S l + RelOpState_emptyRel : RELA S l + RelOpState_comp : {!!} → {!!} → RELA S l + RelOpState_union : RELA S l → RELA S l → RELA S l + RelOpState_unionInf : ( ℕ → RELA S l ) → RELA S l + RelOpState_repeat : ℕ → RELA S l → (Comm -> RELA S l ) → RELA S l + RelOpState_deltaRestPre : RELA S l + RelOpState_deltaRestPost : RELA S l + +Iff : {!!} +Iff = {!!} + +_/\_ : {!!} +_/\_ = {!!} + +tautValid : (b1 b2 : Cond) -> Tautology b1 b2 -> + (s : State) -> SemCond b1 s -> SemCond b2 s +tautValid = {!!} + +respNeg : (b : Cond) -> (s : State) -> + Iff (SemCond (neg b) s) (¬ SemCond b s) +respNeg = {!!} + +respAnd : (b1 b2 : Cond) -> (s : State) -> + Iff (SemCond (b1 /\ b2) s) + ((SemCond b1 s) × (SemCond b2 s)) +respAnd = {!!} + +PrimSemComm : {!!} -- ∀ {l} {S : Set } -> PrimComm -> (x y : State ) → RELA S l x y +PrimSemComm = {!!} + +axiomValid : ∀ {l} -> (bPre : Cond) -> (pcm : PrimComm) -> (bPost : Cond) -> + (ax : Axiom bPre pcm bPost) -> (s1 s2 : State) -> + SemCond bPre s1 -> PrimSemComm {l} pcm s1 s2 -> SemCond bPost s2 +axiomValid = {!!} + + +NotP : (Cond -> {!!} ) → (Cond -> {!!} ) +NotP = {!!} + +substId1 : {!!} +substId1 = {!!} + +when : {!!} +when = {!!} + + +_\/_ : Cond -> Cond -> Cond +b1 \/ b2 = neg (neg b1 /\ neg b2) + +_==>_ : Cond -> Cond -> Cond +b1 ==> b2 = neg (b1 \/ b2) + +-- Hoare Triple +-- data HT : Set where +-- ht : Cond -> Comm -> Cond -> HT + + +-- semantics of commands +SemComm : Comm -> RELA State (Level.zero) +SemComm Skip = RelOpState_deltaGlob +SemComm Abort = RelOpState_emptyRel +SemComm (PComm pc) = PrimSemComm pc +SemComm (Seq c1 c2) = RelOpState_comp (SemComm c1) (SemComm c2) +SemComm (If b c1 c2) + = RelOpState_union + (RelOpState_comp (RelOpState_delta (SemCond b)) + (SemComm c1)) + (RelOpState_comp (RelOpState_delta (NotP (SemCond b))) + (SemComm c2)) +SemComm (While b c) + = RelOpState_unionInf + (λ (n : ℕ) -> + RelOpState_comp (RelOpState_repeat + n + (RelOpState_comp + (RelOpState_delta (SemCond b)) + (SemComm c))) + (RelOpState_delta (NotP (SemCond b)))) + +Satisfies : Cond -> Comm -> Cond -> Set +Satisfies bPre cm bPost + = (s1 : State) -> (s2 : State) -> + SemCond bPre s1 -> {!!} -- SemComm cm s1 s2 -> SemCond bPost s2 + +Soundness : {bPre : Cond} -> {cm : Comm} -> {bPost : Cond} -> + HTProof bPre cm bPost -> Satisfies bPre cm bPost +Soundness (PrimRule {bPre} {cm} {bPost} pr) s1 s2 q1 q2 + = axiomValid bPre cm bPost pr s1 s2 q1 q2 +Soundness {.bPost} {.Skip} {bPost} (SkipRule .bPost) s1 s2 q1 q2 + = substId1 {Level.zero} {State} {s1} {s2} (proj₂ q2) (SemCond bPost) q1 +Soundness {bPre} {.Abort} {bPost} (AbortRule .bPre .bPost) s1 s2 q1 () +Soundness (WeakeningRule {bPre} {bPre'} {cm} {bPost'} {bPost} tautPre pr tautPost) + s1 s2 q1 q2 + = let hyp : Satisfies bPre' cm bPost' + hyp = Soundness pr + r1 : SemCond bPre' s1 + r1 = tautValid bPre bPre' tautPre s1 q1 + r2 : SemCond bPost' s2 + r2 = hyp s1 s2 r1 q2 + in tautValid bPost' bPost tautPost s2 r2 +Soundness (SeqRule {bPre} {cm1} {bMid} {cm2} {bPost} pr1 pr2) + s1 s2 q1 q2 + = let hyp1 : Satisfies bPre cm1 bMid + hyp1 = Soundness pr1 + hyp2 : Satisfies bMid cm2 bPost + hyp2 = Soundness pr2 + sMid : State + sMid = proj₁ q2 + r1 : SemComm cm1 s1 sMid × SemComm cm2 sMid s2 + r1 = proj₂ q2 + r2 : SemComm cm1 s1 sMid + r2 = proj₁ r1 + r3 : SemComm cm2 sMid s2 + r3 = proj₂ r1 + r4 : SemCond bMid sMid + r4 = hyp1 s1 sMid q1 r2 + in hyp2 sMid s2 r4 r3 +Soundness (IfRule {cmThen} {cmElse} {bPre} {bPost} {b} pThen pElse) + s1 s2 q1 q2 + = let hypThen : Satisfies (bPre /\ b) cmThen bPost + hypThen = Soundness pThen + hypElse : Satisfies (bPre /\ neg b) cmElse bPost + hypElse = Soundness pElse + rThen : RelOpState_comp + (RelOpState_delta (SemCond b)) + (SemComm cmThen) s1 s2 -> + SemCond bPost s2 + rThen = λ h -> + let t1 : SemCond b s1 × SemComm cmThen s1 s2 + t1 = (proj₂ (RelOpState_deltaRestPre + (SemCond b) + (SemComm cmThen) s1 s2)) h + t2 : SemCond (bPre /\ b) s1 + t2 = (proj₂ (respAnd bPre b s1)) + (q1 , proj₁ t1) + in hypThen s1 s2 t2 (proj₂ t1) + rElse : RelOpState_comp + (RelOpState_delta (NotP (SemCond b))) + (SemComm cmElse) s1 s2 -> + SemCond bPost s2 + rElse = λ h -> + let t10 : (NotP (SemCond b) s1) × + (SemComm cmElse s1 s2) + t10 = proj₂ (RelOpState_deltaRestPre + (NotP (SemCond b)) (SemComm cmElse) s1 s2) + h + t6 : SemCond (neg b) s1 + t6 = proj₂ (respNeg b s1) (proj₁ t10) + t7 : SemComm cmElse s1 s2 + t7 = proj₂ t10 + t8 : SemCond (bPre /\ neg b) s1 + t8 = proj₂ (respAnd bPre (neg b) s1) + (q1 , t6) + in hypElse s1 s2 t8 t7 + in when rThen rElse q2 +Soundness (WhileRule {cm'} {bInv} {b} pr) s1 s2 q1 q2 + = proj₂ (respAnd bInv (neg b) s2) t20 + where + hyp : Satisfies (bInv /\ b) cm' bInv + hyp = Soundness pr + n : ℕ + n = proj₁ q2 + Rel1 : ℕ -> Rel State (Level.zero) + Rel1 = λ m -> + RelOpState_repeat + m + (RelOpState_comp (RelOpState_delta (SemCond b)) + (SemComm cm')) + t1 : RelOpState_comp + (Rel1 n) + (RelOpState_delta (NotP (SemCond b))) s1 s2 + t1 = proj₂ q2 + t15 : (Rel1 n s1 s2) × (NotP (SemCond b) s2) + t15 = proj₂ (RelOpState_deltaRestPost + (NotP (SemCond b)) (Rel1 n) s1 s2) + t1 + t16 : Rel1 n s1 s2 + t16 = proj₁ t15 + t17 : NotP (SemCond b) s2 + t17 = proj₂ t15 + lem1 : (m : ℕ) -> (ss2 : State) -> Rel1 m s1 ss2 -> + SemCond bInv ss2 + lem1 ℕ.zero ss2 h + = substId1 (proj₂ h) (SemCond bInv) q1 + lem1 (ℕ.suc n) ss2 h + = let hyp2 : (z : State) -> Rel1 n s1 z -> + SemCond bInv z + hyp2 = lem1 n + s20 : State + s20 = proj₁ h + t21 : Rel1 n s1 s20 + t21 = proj₁ (proj₂ h) + t22 : (SemCond b s20) × (SemComm cm' s20 ss2) + t22 = proj₂ (RelOpState_deltaRestPre + (SemCond b) (SemComm cm') s20 ss2) + (proj₂ (proj₂ h)) + t23 : SemCond (bInv /\ b) s20 + t23 = proj₂ (respAnd bInv b s20) + (hyp2 s20 t21 , proj₁ t22) + in hyp s20 ss2 t23 (proj₂ t22) + t20 : SemCond bInv s2 × SemCond (neg b) s2 + t20 = lem1 n s2 t16 , proj₂ (respNeg b s2) t17
--- a/whileTestPrim.agda Sun Dec 16 22:01:40 2018 +0900 +++ b/whileTestPrim.agda Mon Dec 24 10:08:46 2018 +0900 @@ -83,6 +83,36 @@ neg : Cond -> Cond neg x = λ env → not ( x env ) +{- + prPre pr prPost + ------------- ------------------ ---------------- + bPre => bPre' {bPre'} c {bPost'} bPost' => bPost +Weakening : ---------------------------------------------------- + {bPre} c {bPost} + +Assign: ---------------------------- + {bPost[v<-e]} v:=e {bPost} + + pr1 pr2 + ----------------- ------------------ + {bPre} cm1 {bMid} {bMid} cm2 {bPost} +Seq: --------------------------------------- + {bPre} cm1 ; cm2 {bPost} + + pr1 pr2 + ----------------------- --------------------------- + {bPre /\ c} cm1 {bPost} {bPre /\ neg c} cm2 {bPost} +If: ------------------------------------------------------ + {bPre} If c then cm1 else cm2 fi {bPost} + + pr + ------------------- + {inv /\ c} cm {inv} +While: --------------------------------------- + {inv} while c do cm od {inv /\ neg c} +-} + + data HTProof : Cond -> Comm -> Cond -> Set where PrimRule : {bPre : Cond} -> {pcm : PrimComm} -> {bPost : Cond} -> (pr : Axiom bPre pcm bPost) ->