Mercurial > hg > Members > ryokka > HoareLogic
changeset 42:8813f26da3b7
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 15 Dec 2019 12:29:13 +0900 |
parents | 107cd3825e61 |
children | 52523a6ee221 5a3c9d087c7c |
files | whileTestGears.agda |
diffstat | 1 files changed, 48 insertions(+), 46 deletions(-) [+] |
line wrap: on
line diff
--- a/whileTestGears.agda Sun Dec 15 10:18:26 2019 +0900 +++ b/whileTestGears.agda Sun Dec 15 12:29:13 2019 +0900 @@ -10,35 +10,36 @@ open import utilities open _/\_ -record Env : Set where +record Env : Set (succ Zero) where field varn : ℕ vari : ℕ -open Env + cx : Set +open Env -whileTest : {l : Level} {t : Set l} → (c10 : ℕ) → (Code : Env → t) → t -whileTest c10 next = next (record {varn = c10 ; vari = 0} ) +whileTest : {l : Level} {t : Set l} (c : Set ) → (c10 : ℕ) → (Code : Env → t) → t +whileTest c c10 next = next (record {varn = c10 ; vari = 0 ; cx = c} ) {-# TERMINATING #-} whileLoop : {l : Level} {t : Set l} → Env → (Code : Env → t) → t whileLoop env next with lt 0 (varn env) whileLoop env next | false = next env whileLoop env next | true = - whileLoop (record {varn = (varn env) - 1 ; vari = (vari env) + 1}) next + whileLoop (record env {varn = (varn env) - 1 ; vari = (vari env) + 1}) next -test1 : Env -test1 = whileTest 10 (λ env → whileLoop env (λ env1 → env1 )) +test1 : (c : Set ) → Env +test1 c = whileTest c 10 (λ env → whileLoop env (λ env1 → env1 )) -proof1 : whileTest 10 (λ env → whileLoop env (λ e → (vari e) ≡ 10 )) -proof1 = refl +proof1 : (c : Set ) → whileTest c 10 (λ env → whileLoop env (λ e → (vari e) ≡ 10 )) +proof1 c = refl -- ↓PostCondition -whileTest' : {l : Level} {t : Set l} → {c10 : ℕ } → (Code : (env : Env) → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) → t) → t -whileTest' {_} {_} {c10} next = next env proof2 +whileTest' : {l : Level} {t : Set l} → {c : Set} → {c10 : ℕ } → (Code : (env : Env ) → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) → t) → t +whileTest' {_} {_} {c} {c10} next = next env proof2 where - env : Env - env = record {vari = 0 ; varn = c10} + env : Env + env = record {vari = 0 ; varn = c10 ; cx = c } proof2 : ((vari env) ≡ 0) /\ ((varn env) ≡ c10) -- PostCondition proof2 = record {pi1 = refl ; pi2 = refl} @@ -47,35 +48,36 @@ {-# TERMINATING #-} -- ↓PreCondition(Invaliant) -whileLoop' : {l : Level} {t : Set l} → (env : Env) → {c10 : ℕ } → ((varn env) + (vari env) ≡ c10) → (Code : Env → t) → t +whileLoop' : {l : Level} {t : Set l} → (env : Env ) → {c10 : ℕ } → ((varn env) + (vari env) ≡ c10) → (Code : Env → t) → t whileLoop' env proof next with ( suc zero ≤? (varn env) ) whileLoop' env proof next | no p = next env whileLoop' env {c10} proof next | yes p = whileLoop' env1 (proof3 p ) next where - env1 = record {varn = (varn env) - 1 ; vari = (vari env) + 1} + env1 = record env {varn = (varn env) - 1 ; vari = (vari env) + 1} 1<0 : 1 ≤ zero → ⊥ 1<0 () proof3 : (suc zero ≤ (varn env)) → varn env1 + vari env1 ≡ c10 - proof3 (s≤s lt) with varn env - proof3 (s≤s z≤n) | zero = ⊥-elim (1<0 p) - proof3 (s≤s (z≤n {n'}) ) | suc n = let open ≡-Reasoning in - begin - n' + (vari env + 1) - ≡⟨ cong ( λ z → n' + z ) ( +-sym {vari env} {1} ) ⟩ - n' + (1 + vari env ) - ≡⟨ sym ( +-assoc (n') 1 (vari env) ) ⟩ - (n' + 1) + vari env - ≡⟨ cong ( λ z → z + vari env ) +1≡suc ⟩ - (suc n' ) + vari env - ≡⟨⟩ - varn env + vari env - ≡⟨ proof ⟩ - c10 - ∎ + proof3 = {!!} + -- proof3 (s≤s lt) with varn env + -- proof3 (s≤s z≤n) | zero = ⊥-elim (1<0 p) + -- proof3 (s≤s (z≤n {n'}) ) | suc n = let open ≡-Reasoning in + -- begin + -- n' + (vari env + 1) + -- ≡⟨ cong ( λ z → n' + z ) ( +-sym {vari env} {1} ) ⟩ + -- n' + (1 + vari env ) + -- ≡⟨ sym ( +-assoc (n') 1 (vari env) ) ⟩ + -- (n' + 1) + vari env + -- ≡⟨ cong ( λ z → z + vari env ) +1≡suc ⟩ + -- (suc n' ) + vari env + -- ≡⟨⟩ + -- varn env + vari env + -- ≡⟨ proof ⟩ + -- c10 + -- ∎ -- Condition to Invaliant -conversion1 : {l : Level} {t : Set l } → (env : Env) → {c10 : ℕ } → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) - → (Code : (env1 : Env) → (varn env1 + vari env1 ≡ c10) → t) → t +conversion1 : {l : Level} {t : Set l } → (env : Env ) → {c10 : ℕ } → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) + → (Code : (env1 : Env ) → (varn env1 + vari env1 ≡ c10) → t) → t conversion1 env {c10} p1 next = next env proof4 where proof4 : varn env + vari env ≡ c10 @@ -91,8 +93,8 @@ ∎ -proofGears : {c10 : ℕ } → Set -proofGears {c10} = whileTest' {_} {_} {c10} (λ n p1 → conversion1 n p1 (λ n1 p2 → whileLoop' n1 p2 (λ n2 → ( vari n2 ≡ c10 )))) +proofGears : {c10 : ℕ } → Set → Set +proofGears {c10} c = whileTest' {_} {_} {c} {c10} (λ n p1 → conversion1 n p1 (λ n1 p2 → whileLoop' n1 p2 (λ n2 → ( vari n2 ≡ c10 )))) data whileTestState (c10 : ℕ ) (env : Env ) : Set where error : whileTestState c10 env @@ -101,13 +103,13 @@ finstate : ((vari env) ≡ c10 ) → whileTestState c10 env -- --- openended Env <=> Context +-- openended Env c <=> Context -- -record Context : Set where +record Context : Set (succ Zero) where field c10 : ℕ - whileDG : Env + whileDG : Env whileCond : whileTestState c10 whileDG open Context @@ -133,7 +135,7 @@ whileLoopContext cxt next with lt 0 (varn (whileDG cxt) ) whileLoopContext cxt next | false = next cxt whileLoopContext cxt next | true = - whileLoopContext (record cxt { whileDG = record {varn = (varn (whileDG cxt)) - 1 ; vari = (vari (whileDG cxt)) + 1} ; whileCond = state2 (proof cxt) } ) next + whileLoopContext (record cxt { whileDG = record (whileDG cxt) {varn = (varn (whileDG cxt)) - 1 ; vari = (vari (whileDG cxt)) + 1} ; whileCond = state2 (proof cxt) } ) next where proof : (cxt : Context) → (varn (whileDG cxt) - 1) + (vari (whileDG cxt) + 1) ≡ c10 cxt proof cxt = {!!} @@ -142,13 +144,13 @@ whileLoopStep : {l : Level} {t : Set l} → Env → (next : (e : Env ) → t) (exit : (e : Env) → t) → t whileLoopStep env next exit with <-cmp 0 (varn env) whileLoopStep env next exit | tri≈ _ eq _ = exit env -whileLoopStep env next exit | tri< gt ¬eq _ = next record {varn = (varn env) - 1 ; vari = (vari env) + 1} +whileLoopStep env next exit | tri< gt ¬eq _ = next record env {varn = (varn env) - 1 ; vari = (vari env) + 1} whileLoopStep env next exit | tri> _ _ c = ⊥-elim (m<n⇒n≢0 {varn env} {0} c refl) whileTestProof : {l : Level} {t : Set l} → Context → (Code : (cxt : Context ) → ¬ (vari (whileDG cxt) ≡ varn (whileDG cxt) ) → t) → t whileTestProof cxt next = next record cxt { whileDG = out ; whileCond = init } i!=n where out : Env - out = whileTest (c10 cxt) ( λ e → e ) + out = whileTest {!!} (c10 cxt) ( λ e → e ) init : whileTestState (c10 cxt) out init = state1 record { pi1 = refl ; pi2 = refl } i!=n : ¬ vari out ≡ varn out @@ -203,12 +205,12 @@ lem c | no ¬p = {!!} -- f c (λ c1 _ → lem c1 ) lem c | yes p = {!!} -whileLoopProof' : {l : Level} {t : Set l} → (cxt : Context ) - → (continue : (cxt : Context ) → whileCondP (whileDG cxt) → t) (exit : Context → ¬ whileCondP (whileDG cxt) → t) → t -whileLoopProof' = ? +whileLoopProof' : {l : Level} {t : Set l} + → (cxt : Context ) → ( continue : (cxt : Context ) → whileCondP (whileDG cxt) → t) (exit : Context → ¬ whileCondP (whileDG cxt) → t) → t +whileLoopProof' = {!!} proofWhileGear : (c : ℕ) (cxt : Context) → whileTestProof (record cxt { c10 = c ; whileCond = error }) $ λ cxt i!=n → whileConvProof cxt i!=n - $ λ cxt i+n=c10 → loopProof cxt whileDec ? - $ λ cxt _ → ? + $ λ cxt i+n=c10 → loopProof cxt whileDec {!!} -- whileLoopProof' + $ λ cxt _ → {!!} proofWhileGear c cxt = {!!}