Mercurial > hg > Members > ryokka > HoareLogic
changeset 87:908ed82e33c6
termination
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 29 Oct 2021 20:09:19 +0900 |
parents | dc667b21c1b0 |
children | accd3d99cc86 |
files | whileTestGears1.agda |
diffstat | 1 files changed, 63 insertions(+), 40 deletions(-) [+] |
line wrap: on
line diff
--- a/whileTestGears1.agda Fri Oct 29 13:03:52 2021 +0900 +++ b/whileTestGears1.agda Fri Oct 29 20:09:19 2021 +0900 @@ -16,18 +16,18 @@ vari : ℕ open Env -whileTestS : { m : Level} -> (c10 : ℕ) → (Code : Env -> Set m) -> Set m +whileTestS : { m : Level} → (c10 : ℕ) → (Code : Env → Set m) → Set m whileTestS c10 next = next (record {varn = c10 ; vari = 0} ) whileTestS1 : (c10 : ℕ) → whileTestS c10 (λ e → ((varn e ≡ c10) /\ (vari e ≡ 0 )) ) whileTestS1 c10 = record { pi1 = refl ; pi2 = refl } -whileTest : {l : Level} {t : Set l} -> (c10 : ℕ) → (Code : Env -> t) -> t +whileTest : {l : Level} {t : Set l} → (c10 : ℕ) → (Code : Env → t) → t whileTest c10 next = next (record {varn = c10 ; vari = 0} ) {-# TERMINATING #-} -whileLoop : {l : Level} {t : Set l} -> Env -> (Code : Env -> t) -> t +whileLoop : {l : Level} {t : Set l} → Env → (Code : Env → t) → t whileLoop env next with lt 0 (varn env) whileLoop env next | false = next env whileLoop env next | true = @@ -41,7 +41,7 @@ proof1 = refl -- ↓PostCondition -whileTest' : {l : Level} {t : Set l} -> {c10 : ℕ } → (Code : (env : Env) -> ((vari env) ≡ 0) /\ ((varn env) ≡ c10) -> t) -> t +whileTest' : {l : Level} {t : Set l} → {c10 : ℕ } → (Code : (env : Env) → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) → t) → t whileTest' {_} {_} {c10} next = next env proof2 where env : Env @@ -52,53 +52,48 @@ open import Data.Empty open import Data.Nat.Properties +lemma1 : {i : ℕ} → ¬ 1 ≤ i → i ≡ 0 +lemma1 {zero} not = refl +lemma1 {suc i} not = ⊥-elim ( not (s≤s z≤n) ) {-# TERMINATING #-} -- ↓PreCondition(Invaliant) -whileLoop' : {l : Level} {t : Set l} -> (env : Env) -> {c10 : ℕ } → ((varn env) + (vari env) ≡ c10) - -> (Code : (e1 : Env )→ vari e1 ≡ c10 -> t) -> t +whileLoop' : {l : Level} {t : Set l} → (env : Env) → {c10 : ℕ } → ((varn env) + (vari env) ≡ c10) + → (Code : (e1 : Env )→ vari e1 ≡ c10 → t) → t whileLoop' env proof next with ( suc zero ≤? (varn env) ) -whileLoop' env proof next | no p = next env {!!} -whileLoop' env {c10} proof next | yes p = whileLoop' env1 (proof3 p ) next - where +whileLoop' env {c10} proof next | no p = next env ( begin + vari env ≡⟨ refl ⟩ + 0 + vari env ≡⟨ cong (λ k → k + vari env) (sym (lemma1 p )) ⟩ + varn env + vari env ≡⟨ proof ⟩ + c10 ∎ ) where open ≡-Reasoning +whileLoop' env {c10} proof next | yes p = whileLoop' env1 (proof3 p ) next where env1 = record {varn = (varn env) - 1 ; vari = (vari env) + 1} 1<0 : 1 ≤ zero → ⊥ 1<0 () proof3 : (suc zero ≤ (varn env)) → varn env1 + vari env1 ≡ c10 proof3 (s≤s lt) with varn env proof3 (s≤s z≤n) | zero = ⊥-elim (1<0 p) - proof3 (s≤s (z≤n {n'}) ) | suc n = let open ≡-Reasoning in - begin - n' + (vari env + 1) - ≡⟨ cong ( λ z → n' + z ) ( +-sym {vari env} {1} ) ⟩ - n' + (1 + vari env ) - ≡⟨ sym ( +-assoc (n') 1 (vari env) ) ⟩ - (n' + 1) + vari env - ≡⟨ cong ( λ z → z + vari env ) +1≡suc ⟩ - (suc n' ) + vari env - ≡⟨⟩ - varn env + vari env - ≡⟨ proof ⟩ + proof3 (s≤s (z≤n {n'}) ) | suc n = let open ≡-Reasoning in begin + n' + (vari env + 1) ≡⟨ cong ( λ z → n' + z ) ( +-sym {vari env} {1} ) ⟩ + n' + (1 + vari env ) ≡⟨ sym ( +-assoc (n') 1 (vari env) ) ⟩ + (n' + 1) + vari env ≡⟨ cong ( λ z → z + vari env ) +1≡suc ⟩ + (suc n' ) + vari env ≡⟨⟩ + varn env + vari env ≡⟨ proof ⟩ c10 ∎ -- Condition to Invaliant -conversion1 : {l : Level} {t : Set l } → (env : Env) -> {c10 : ℕ } → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) - -> (Code : (env1 : Env) -> (varn env1 + vari env1 ≡ c10) -> t) -> t -conversion1 env {c10} p1 next = next env proof4 - where +conversion1 : {l : Level} {t : Set l } → (env : Env) → {c10 : ℕ } → ((vari env) ≡ 0) /\ ((varn env) ≡ c10) + → (Code : (env1 : Env) → (varn env1 + vari env1 ≡ c10) → t) → t +conversion1 env {c10} p1 next = next env proof4 where proof4 : varn env + vari env ≡ c10 - proof4 = let open ≡-Reasoning in - begin - varn env + vari env - ≡⟨ cong ( λ n → n + vari env ) (pi2 p1 ) ⟩ - c10 + vari env - ≡⟨ cong ( λ n → c10 + n ) (pi1 p1 ) ⟩ - c10 + 0 - ≡⟨ +-sym {c10} {0} ⟩ + proof4 = let open ≡-Reasoning in begin + varn env + vari env ≡⟨ cong ( λ n → n + vari env ) (pi2 p1 ) ⟩ + c10 + vari env ≡⟨ cong ( λ n → c10 + n ) (pi1 p1 ) ⟩ + c10 + 0 ≡⟨ +-sym {c10} {0} ⟩ c10 ∎ -open import Data.Unit +open import Data.Unit hiding ( _≟_ ; _≤?_ ; _≤_) whileTestSpec1 : (c10 : ℕ) → (e1 : Env ) → vari e1 ≡ c10 → ⊤ whileTestSpec1 _ _ x = tt @@ -106,10 +101,38 @@ proofGears : {c10 : ℕ } → ⊤ proofGears {c10} = whileTest' {_} {_} {c10} (λ n p1 → conversion1 n p1 (λ n1 p2 → whileLoop' n1 p2 (λ n2 p3 → whileTestSpec1 c10 n2 p3 ))) -{-# TERMINATING #-} -whileLoop0 : {l : Level} {t m : Set l} -> m -> Env -> (Code : m -> Env -> t) -> t -whileLoop0 m env next with lt 0 (varn env) -whileLoop0 m env next | false = next m env -whileLoop0 m env next | true = - whileLoop0 m (record {varn = (varn env) - 1 ; vari = (vari env) + 1}) next +-- ↓PreCondition(Invaliant) +whileLoopSeg : {l : Level} {t : Set l} → {c10 : ℕ } → (env : Env) → ((varn env) + (vari env) ≡ c10) + → (next : (e1 : Env )→ varn e1 + vari e1 ≡ c10 → t) + → (exit : (e1 : Env )→ vari e1 ≡ c10 → t) → t +whileLoopSeg env proof next exit with ( suc zero ≤? (varn env) ) +whileLoopSeg {_} {_} {c10} env proof next exit | no p = exit env ( begin + vari env ≡⟨ refl ⟩ + 0 + vari env ≡⟨ cong (λ k → k + vari env) (sym (lemma1 p )) ⟩ + varn env + vari env ≡⟨ proof ⟩ + c10 ∎ ) where open ≡-Reasoning +whileLoopSeg {_} {_} {c10} env proof next exit | yes p = next env1 (proof3 p ) where + env1 = record {varn = (varn env) - 1 ; vari = (vari env) + 1} + 1<0 : 1 ≤ zero → ⊥ + 1<0 () + proof3 : (suc zero ≤ (varn env)) → varn env1 + vari env1 ≡ c10 + proof3 (s≤s lt) with varn env + proof3 (s≤s z≤n) | zero = ⊥-elim (1<0 p) + proof3 (s≤s (z≤n {n'}) ) | suc n = let open ≡-Reasoning in begin + n' + (vari env + 1) ≡⟨ cong ( λ z → n' + z ) ( +-sym {vari env} {1} ) ⟩ + n' + (1 + vari env ) ≡⟨ sym ( +-assoc (n') 1 (vari env) ) ⟩ + (n' + 1) + vari env ≡⟨ cong ( λ z → z + vari env ) +1≡suc ⟩ + (suc n' ) + vari env ≡⟨⟩ + varn env + vari env ≡⟨ proof ⟩ + c10 + ∎ +TerminatingLoop : {l : Level} {t : Set l} {c10 : ℕ } → (i : ℕ) → (env : Env) → i ≡ varn env + → varn env + vari env ≡ c10 + → (exit : (e1 : Env )→ vari e1 ≡ c10 → t) → t +TerminatingLoop {_} {_} {c10} zero env refl p exit = + exit env p +TerminatingLoop {_} {_} {c10} (suc i) env eq p exit = + whileLoopSeg {_} {_} {c10} env p (λ e1 p1 → TerminatingLoop {_} {_} {c10} i e1 (lemma2 e1 p1 eq) p1 exit) exit where + lemma2 : (e1 : Env) → varn e1 + vari e1 ≡ c10 → suc i ≡ varn env → i ≡ varn e1 + lemma2 = {!!}